Skip to main content

Large-Eddy Simulations of Three-Dimensional Turbulent Flows: Geophysical Applications

  • Chapter
Book cover Ocean Modeling and Parameterization

Part of the book series: NATO Science Series ((ASIC,volume 516))

Abstract

Direct-numerical simulation of turbulence (DNS) consists of solving explicitly all the scales of motion, from the largest l I to the Kolmogorov dissipative scale l D . It is well known from the statistical theory of turbulence that l I /l D scales like \( R_l^{3/4}\), where R l is the large-scale Reynolds number u’l I / v based upon the rms velocity fluctuation u’. Therefore, the total number of degrees of freedom necessary to represent the whole span of scales of a three-dimensional turbulent flow is of the order of \( R_l^{9/4}\) in three dimensions. With the presently available computers, the DNS is then limited to Reynolds numbers which are several orders of magnitude smaller than those encountered in the ocean, the atmosphere, or most of the industrial facilities. In order to increase the Reynolds number in the simulations, it is necessary to introduce a subgrid-scale model representing the action of scales smaller than Δx, the computational mesh, upon the explicitly resolved scales. This is the basis of the Large-Eddy Simulation (LES) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbà, A., Cercignani, C., Valdettaro, L., and Zanini, P. (1997) LES of turbulent thermal convection, in J.P. Chollet, P.R. Voke and L. Kleiser (eds.), Direct and Large Eddy Simulation II, Kluwer Academic Publishers, pp. 147–156.

    Chapter  Google Scholar 

  2. . Bardina, J., Ferziger, J.H., Reynolds, W.C. (1980) Improved subgrid model for large-eddy simulation, AIAA paper N° 80-1357.

    Google Scholar 

  3. Bartello, P., Métais, O., and Lesieur, M. (1994) Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273 1–29.

    Article  Google Scholar 

  4. Basdevant, C., Sadourny R. (1983) Modélisation des échelles virtuelles dans la simulation numérique des écoulements bidimensionnels. J. Mec. Theor. et Appl., Numéro Spécial, 243–269.

    Google Scholar 

  5. Bernal, L.P., and Roshko, A. (1986) Streamwise vortex structure in plane mixing layer, J. Fluid Mech. 170 499–525.

    Article  Google Scholar 

  6. Brown, G., and Roshko, A. (1974) On density effects and large structure in turbulent mixing layers, J. Fluid Mech. 64 775–816.

    Article  Google Scholar 

  7. Clark, R.A., Ferziger, J.H., and Reynolds, W.C. (1979) Evaluation of subgrid-scale models using an accurately simulated turbulent flow, J. Fluid Mech. 91 1–16.

    Article  Google Scholar 

  8. Comte, P., Ducros, F., Silvestrini, J., David, E., Lamballais, E., Métais, O. and Lesieur, M. (1994) Simulation des grandes échelles d’écoulements transitionnels, AGARD Conference Proceedings 551, pp. 14.1–14.12.

    Google Scholar 

  9. David, E. (1993) Modélisation des Ecoulements Compressibles et Hypersoniques: une Approche Instationnaire. PhD thesis. National Polytechnic Institute, Grenoble.

    Google Scholar 

  10. Deardorff, J.W. (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds number, J. Fluid Mech. 41 453–80.

    Article  Google Scholar 

  11. Ducros, F., Comte, P., and Lesieur, M. (1996) Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate, J. Fluid Mech. 326 1–36.

    Article  Google Scholar 

  12. El-Hady, N.M., and Zang T.A. (1995) Large-eddy simulation of nonlinear evolution and breakdown to turbulence in high-speed boundary layers, Theoret. Comput. Fluid Dynamics 7 217–240.

    Article  Google Scholar 

  13. Gamier, E., Métais, O., and Lesieur, M. (1998) Synoptic and frontal-cyclone scale instabilities in baroclinic jet flows, J. Atmos. Sci., in press.

    Google Scholar 

  14. Gamier, E., Métais, O., and Lesieur, M. (1996) Instabilités primaire et secondaire dans un jet barocline, C.R. Acad. Sci. Paris Série II b 323 161–168.

    Google Scholar 

  15. Germano, M., (1992) Turbulence, the filtering approach, J. Fluid Mech. 238 325–336.

    Article  Google Scholar 

  16. Germano, M., Piomelli, U., Moin, P., and Cabot, W. (1991) A dynamic subgridscale eddy-viscosity model, Phys. Fluids A. 3(7), 1760–1765.

    Article  Google Scholar 

  17. Gonze, M.A. (1993) Simulation Numérique des Sillages en Transition it la Turbulence. PhD thesis. National Polytechnic Institute, Grenoble.

    Google Scholar 

  18. Kolmogorov, A.N. (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30 301–305.

    Google Scholar 

  19. Kraichnan, R.H. (1976) Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33 1521–1536.

    Article  Google Scholar 

  20. Lamballais, E. (1996) Simulations numériques de la turbulence dans un canal plan tournant, PhD thesis. National Polytechnic Institute, Grenoble.

    Google Scholar 

  21. Lamballais, E., Lesieur, M., Métais, O. (1996) Effects of spanwise rotation on the vorticity stretching in transitional and turbulent channel flow, Int. J. Heat and Fluid Flow 17 (3), 324–332.

    Article  Google Scholar 

  22. Lamballais, E., Lesieur, M., and Métais, O. (1996) Influence of a solid-body rotation upon coherent vortices in a channel, C. R. Acad. Sci. Série II b 323 95–101.

    Google Scholar 

  23. Lamballais, E., Métais, O., and Lesieur, M. (1996) Influence of a spanwise rotation upon the coherent-structure dynamics in a turbulent channel flow, in J.P. Chollet, P.R. Voke and L. Kleiser (eds.), Direct and Large Eddy Simulation II, Kluwer Academic Publishers, pp. 225–236.

    Google Scholar 

  24. Large, W., 1998: Modeling and parameterizing ocean planetary boundary layers. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 81–120.

    Chapter  Google Scholar 

  25. Lele, S.K. (1992) Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 16–42.

    Article  Google Scholar 

  26. Lesieur, M. (1997) Recent approaches in large-eddy simulations of turbulencein O. Métais and J. Ferziger (eds) New Tools in Turbulence Modelling,Les Éditions de Physique, Springer-Verlag, pp. 1–28.

    Google Scholar 

  27. Lesieur, M. (1997) Turbulence in Fluids, Third Revised and Enlarged Edition, Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  28. Lesieur, M., and Métais, O. (1996) New trends in large-eddy simulations of turbulence“, Annu. Rev. Fluid Mech. 28 45–82.

    Article  Google Scholar 

  29. Lesieur, M., Yanase, S., and Métais, O. (1991) Stabilizing and destabilizing effects of a solid-body rotation on quasi-two-dimensional shear layers, Phys. Fluids A 3 403–407.

    Article  Google Scholar 

  30. Lilly, D.K. (1987) J.R. Herring and J.C. McWilliams (eds) Lecture Notes on Turbulence, World Scientific, pp. 171–218.

    Google Scholar 

  31. Liu, S., Meneveau, C., and Katz, J. (1994) On the properties of similarity subgridscale models as deduced from measurements in turbulent jet, J. Fluid Mech. 275,83–119.

    Article  Google Scholar 

  32. Lilly, D.K. (1992) A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A. 4 (3), 633–635.

    Article  Google Scholar 

  33. Mason, P. J. (1994) Large-eddy simulation: a critical review of the technique, Q.J.R. Meteorol. Soc. 120 1–26.

    Article  Google Scholar 

  34. McWilliams, J.C. (1985) A uniformly valid model spanning the regimes of geostrophic and isotropic, stratified turbulence: Balanced turbulence. J. Atmos. Sci. 42 1773–1774.

    Article  Google Scholar 

  35. Métais, O., Flores, C., Yanase, S., Riley, J.J. and Lesieur, M. (1995) Rotating free shear flows Part 2: Numerical simulations, J. Fluid Mech. 293 41–80.

    Article  Google Scholar 

  36. Métais, O., and Lesieur M. (1992) Spectral large-eddy simulations of isotropic and stably-stratified turbulence. J. Fluid Mech 239 157–194.

    Article  Google Scholar 

  37. Moin, P., and Kim, J. (1982) Numerical investigation of turbulent channel flow, J. Fluid Mech. 118 341–377.

    Article  Google Scholar 

  38. Piomelli, U. (1993) High Reynolds number calculations using the dynamic subgridscale stress model, Phys. Fluids A 5 (6), 1484–1490.

    Article  Google Scholar 

  39. . Silvestrini, J., Comte, P., and Lesieur, M. (1995) DNS and LES of spatial incompressible mixing layer. Proc. of the 10th Symposium on Turbulent Shear Flows.

    Google Scholar 

  40. . Skyllingstad, E.D., Smyth, W.D., Moum, J.N., and Wijsesekera, H. (1998) Upper ocean turbulence during a westerly wind burst: a comparison of Large-Eddy Simulation results and microstructure measurements, submitted to J. Phys. Oceanogr..

    Google Scholar 

  41. Smagorinsky, J. (1963) General circulation experiments with the primitive equations, Mon. Weath. Rev. 91 3, 99–164.

    Article  Google Scholar 

  42. Zang, Y., Street, R.L., and Koseff J.R. (1993) A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5 (12), 3186–3196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Métais, O. (1998). Large-Eddy Simulations of Three-Dimensional Turbulent Flows: Geophysical Applications. In: Chassignet, E.P., Verron, J. (eds) Ocean Modeling and Parameterization. NATO Science Series, vol 516. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5096-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5096-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5229-7

  • Online ISBN: 978-94-011-5096-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics