Skip to main content

Topographic Stress: Importance and Parameterization

  • Chapter
Ocean Modeling and Parameterization

Part of the book series: NATO Science Series ((ASIC,volume 516))

Abstract

The ocean circulation problem concerns the motion of a rotating stratified and turbulent fluid on a sphere (the Earth) with complex boundaries introduced by the break up of the continents. This nonlinear nature of ocean dynamics generates a wide variety of interesting physical phenomena mainly related to the existence of strong dynamical links among physical processes occurring at different space and time scales. These links range from space scales of centimeters and time scales that might be counted in minutes or hours, up to global motions with time scales of centuries, that control aspects of the Earth’s climate. This range of scale interactions shown by ocean dynamics induces the appearance of collective phenomena that are hardly explained by the individual properties of each ocean process. Understanding ocean dynamics requires not only the study of isolated individual ocean processes, but also the collective result emerging from the combination of these individual processes acting at different space and time scales. Therefore the study of ocean circulation becomes an extremely difficult task because it requires determining the whole set of space and time scales that characterize the behaviour of the ocean system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez A., Tintoré J., Holloway G., Eby M., Beckers J. M. (1994) The effect of the topographic stress on the Western Mediterranean circulation, J. Geophys. Res. 99 16053–16064.

    Article  Google Scholar 

  2. Alvarez A., Hernandez E., Tintoré J. (1997) Noise-sustained currents on quasigeostrophic turbulence over topography, Physica A 247, 312–326.

    Article  Google Scholar 

  3. . Alvarez A., Hernandez E., Tintoré J. (1998) Noise rectification in quasigeostrophic forced turbulence, submitted to Phys. Rev. Letters.

    Google Scholar 

  4. Arnone A., Wiesenberg D. A., Saunders K. D. (1991) The origin and characteristics of the Algerian Current, J. Geophys. Res. 95, 1587–1599.

    Article  Google Scholar 

  5. Beckers J. M. (1992), M.A. Thesis, Universite de Liege, Belgium, 360 pp.

    Google Scholar 

  6. Bethoux J. P. (1979) Budgets of the Mediterranean Sea. Their dependence on the local climate and on the characteristics of the Atlantic Waters, Oceanol. Acta 2, 157–163.

    Google Scholar 

  7. Bretherton F. P., Haidvogel D. B. (1976) Two-dimensional turbulence above topography, J. Fluid Mech. 78, 129–154.

    Article  Google Scholar 

  8. Bryden H. L., Brady E. C., Pillsbury R. D. (1988) Flow through the Strait of Gibraltar, in J. L. Almazan, T. Kinder, H. Bryden and G. Parrilla (eds.),Seminario sobre la oceanografia fisica del estrecho de Gibraltar,Seceg, Madrid.

    Google Scholar 

  9. Cummins P. F. (1992) Inertial gyres in decaying and forced geostrophic turbulence, J. Mar. Res. 50, 545–566.

    Article  Google Scholar 

  10. Danabasoglu G., McWilliams J C, Gent P. R. (1994) The role of mesoscale tracer transports in the global ocean circulation, Science, 264, 1123–1126.

    Article  Google Scholar 

  11. Edwards S. F. (1964) The statistical dynamics of homogeneous turbulence, J. Fluid Mech. 18, 239–273.

    Article  Google Scholar 

  12. Greiner A., Strittmatter W., Honerkamp J. (1988) Numerical integrations of stochastic differential equations, J. Stat. Phys. 51, 95–108.

    Article  Google Scholar 

  13. Herring J. R. (1977) On the statistical theory of two-dimensional topographic turbulence, J. Atmos. Sci. 34, 1731–1750.

    Article  Google Scholar 

  14. Holland R. W., McWilliams J. C. (1987) Computer modeling in physical oceanography from the global circulation to turbulence, Physics Today 40, 51–67.

    Article  Google Scholar 

  15. Holloway G. (1978) A spectral theory of nonlinear barotropic motion above irregular topography, J. Phys. Oceanogr. 8, 414–427.

    Article  Google Scholar 

  16. Holloway G. (1986) Eddies, waves, circulation and mixing: statistical geofluid mechanics, Ann. Rev. Fluid Mech. 18, 91–147.

    Article  Google Scholar 

  17. Holloway G. (1992) Representing topographic stress for large-scale ocean models, J. Phys. Oceanogr. 22, 1033–1046.

    Article  Google Scholar 

  18. Holloway G., Sou T., Eby M. (1995) Dynamics of the circulation of the Japan Sea, J. Mar. Res. 53, 539–569.

    Article  Google Scholar 

  19. Katz A. (1967) Principles of statistical mechanics, W.H. Freeman & Co., San Francisco; Grandy W. T. (1987) Foundations of statistical mechanics, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  20. Kraichnan R. H., Montgomery D., Rep. Prog. Phys., 43, 547 (1980).

    Article  Google Scholar 

  21. Leith C. E. (1971) Atmospheric predictability and two-dimensional turbulence, J. Atmos. Sci. 28, 145–161.

    Article  Google Scholar 

  22. Levitus S. (1982) Climatological atlas of the world ocean, NOAA Prof. Paper, US Government Printing Office, Washington, DC, 173 pp.

    Google Scholar 

  23. May P. W. (1992) Climatological flux in Western Mediterranean Sea, part 1: wind and wind stresses, NORDA Rep. 54, 56 pp.

    Google Scholar 

  24. Miller J., Weichman P. B., Cross M. C. (1992) Statistical mechanics, Euler’s equation and Jupiter’s Red Spot, Phys. Rev. A 45, 2328–2359.

    Article  Google Scholar 

  25. Millot C. (1987) Circulation in the Western Mediterranean Sea, Oceanol. Acta 10, 143–149.

    Google Scholar 

  26. Millot C. (1991) Mesoscale and seasonal variabilities of the circulation in the Western Mediterranean, Dyn. Atmos. Oceans 15, 179–214.

    Article  Google Scholar 

  27. Neelin D. J., Marotzke J. (1994) Representing ocean eddies in climate models, Science 264, 1099–1100.

    Article  Google Scholar 

  28. Pedlosky J. (1987) Geophysical fluid dynamics, Springer-Verlag, New York.

    Book  Google Scholar 

  29. Salmon R., Holloway G., Hendershot M. C. (1976) The equilibrium statistical mechanics of simple quasi-geostrophic models, J. Fluid Mech. 75, 691–703.

    Article  Google Scholar 

  30. . Sancho J. M., San Miguel M., Katz S., Gunton J. (1982) Analytical and numerical studies of multiplicative noise. Phys. Rev. A 26 1589–1609.

    Article  Google Scholar 

  31. Sou T., Holloway G., Eby M. (1996) Topographic stress and Caribean Sea circulation, J. Geophys. Res. 101,16449–16453.

    Article  Google Scholar 

  32. . Tintoré J., Gomis D., Alonso S., Parrilla G. (1991) Mesoscale dynamics and vertical motion in the Alboran Sea, J. Phys. Oceanogr. 21,811–823.

    Article  Google Scholar 

  33. . Toral R., Chakrabarti A. (1988) Generation of gaussian distributed random numbers by using a numerical inversion method, Computer Phys. Comm. 74,327–334.

    Article  Google Scholar 

  34. . Treguier A. M. (1989) Topographically generated steady currents in barotropic turbulence, Geophys. Astrophys. Fluid Dynamics 47, 43–68.

    Article  Google Scholar 

  35. . Yakhot V., Orszag S. A. (1986) Renormalization group analysis of turbulence I. Basic theory, J. Sci. Comp. 1, 1–51.

    Article  Google Scholar 

  36. . Williams G. P. (1978) Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence, J. Atmos. Sci. 35 1399–1426.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alvarez, A., Tintoré, J. (1998). Topographic Stress: Importance and Parameterization. In: Chassignet, E.P., Verron, J. (eds) Ocean Modeling and Parameterization. NATO Science Series, vol 516. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5096-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5096-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5229-7

  • Online ISBN: 978-94-011-5096-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics