Skip to main content

Oceanic General Circulation Models

  • Chapter
Ocean Modeling and Parameterization

Part of the book series: NATO Science Series ((ASIC,volume 516))

Abstract

The practice of oceanic numerical modeling is growing rapidly. Among the reasons for this are the following: a widespread realization that model solutions can, either now or at least in the near future, be skillful in mimicking observed oceanic features; an understanding of the limitations of the alternative and more traditional scientific methodologies of making measurements in the oceans and developing analytic theories for highly nonlinear dynamical systems; an appreciation of the importance of the oceans in the socially compelling problems of anthropogenic changes in climate and the environment; and an exploitation of the steady increases in computing power that make meaningfully comprehensive oceanic calculations ever more feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arakawa, A. (1988) Finite-difference methods in climate modeling. In: Physically based modeling and simulation of climate and climate change. Part I, M.E. Schlesinger (ed.), Klewer, 79–168.

    Chapter  Google Scholar 

  • Armi, L. (1978) Some evidence for boundary mixing in the deep ocean. J. Geophys. Res. 83, 1971–1979.

    Article  Google Scholar 

  • Armi, L. and D.M. Farmer (1988) The flow of Mediterranean and Atlantic water through the strait of Gibraltar. Prog. Oceanogr. 21, 1–106.

    Article  Google Scholar 

  • Barnier, B., L. Siefridt, & P. Marchesiello (1995) Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst. 6, 363–380.

    Article  Google Scholar 

  • Barnier, B., P. Marchesiello, A.P. de Miranda, J.M. Molines, & M. Coulibaly (1998) A sigma-coordinate, Primitive Equation model for studying the circulation in the South Atlantic. Part I: Model configuration with error estimates. Deep-Sea Res., in press.

    Google Scholar 

  • Beckman, A., & R. Doescher (1997) A method of improved representation of dense water spreading over topography in geopotential-coordinate models. J. Phys. Ocean. 27, 581–591.

    Article  Google Scholar 

  • Berloff, P. & J.C. McWilliams (1998a) The quasigeostrophic dynamics of western boundary currents. Preprint.

    Google Scholar 

  • Berloff, P., & J.C. McWilliams (1998b) Low-frequency intrinsic variability in wind-driven gyres. Preprint.

    Google Scholar 

  • Bleck, R., & E. Chassignet (1994) Simulating the oceanic circulation with isopycniccoordinate models. In: The Oceans: Physical-Chemical Dynamics and Human Impact. S.K. Majumdar, & E.W. Miller, eds., Penn. Acad. Sci., 17–39.

    Google Scholar 

  • Bleck, R., S. Dean, M. O’Keefe, & A. Sawdey (1995) A comparison of data-parallel and message-passing versions of the Miami Isopycnic coordinate Ocean Model. Parallel Computing, submitted.

    Google Scholar 

  • Boening, C.W. (1989) Influences of a rough bottom topography on flow kinematics in an eddy resolving model. J. Phys. Ocean. 19, 77–97.

    Article  Google Scholar 

  • Boening, C.W., W.R. Holland, F.O. Bryan, G. Danabasoglu, &J.C. McWilliams (1995) An overlooked problem in model simulations of the thermohaline circulation and heat transport in the Atlantic Ocean. J. Climate 8, 515–523.

    Article  Google Scholar 

  • Boville, B.A., & P.R. Gent (1998) Century integrations with the NCAR Climate System Model. J. Climate, in press.

    Google Scholar 

  • Bretherton, F. & M. Karweit (1975) Mid-ocean mesoscale modeling. In: Numerical Models of Ocean Circulation, R.O. Reid, ed., National Academy Press, Washington, D.C., 237–249.

    Google Scholar 

  • Bretherton, F. & D.B. Haidvogel (1976) Two-dimensional turbulence above topography. J. Fluid Mech. 78, 129–154.

    Article  Google Scholar 

  • Bryan, K. (1969) A numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 4, 347–376.

    Article  Google Scholar 

  • Bryan, K. (1984) Accelerating the convergence to equilibrium of ocean-climate models. J. Phys. Ocean. 14, 666--683.

    Article  Google Scholar 

  • Bryden, H.L., D.H. Roemmich, & J.A. Church (1991) Ocean heat transport across 24° N in the Pacific. Deep-Sea Res. 38, 297–324.

    Article  Google Scholar 

  • Chao, Yi, A. Gangopadhyay, F.O. Bryan, & W.R. Holland (1996) Modeling the Gulf Stream system: how far from reality? Geophys. Res. Lett. 23, 3155–3158.

    Article  Google Scholar 

  • Cess, R.D., & 19 co-authors (1995) Absorption of solar radiation by clouds: observations versus models. Science 267, 496–499.

    Article  Google Scholar 

  • Chassignet, E.P., Garraffo, Z. and A. Paiva (1998) Fine-mesh (1/12 degree) modeling of the North Atlantic: the spin-up phase. Preprint.

    Google Scholar 

  • Covey, C. (1995) Global ocean circulation and equator-pole heat transport as a function of ocean GCM resolution. J. Climate 11, 425–437.

    Google Scholar 

  • Cummins, P.F., G. Holloway, & A.E. Gargett (1990) Sensitivity of the GFDL ocean general circulation model to a parameterization of vertical diffusion. J. Phys. Ocean. 20, 817–830.

    Article  Google Scholar 

  • Cummins, P F (1991) The deep water stratification of ocean general circulation models. Atmosphere-Ocean 29, 563–575.

    Article  Google Scholar 

  • Danabasoglu, G., J.C. McWilliams, & P.R. Gent (1994) The role of mesoscale tracer transports in the global ocean circulation. Science 264, 1123–1126.

    Article  Google Scholar 

  • Danabasoglu, G., & J.C. McWilliams (1995) Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J. Climate 8, 2967–2987.

    Article  Google Scholar 

  • Danabasoglu, G., J.C. McWilliams, & W.G. Large (1996) Approach to equilibrium in global ocean models. J. Climate 9, 1092–1110.

    Article  Google Scholar 

  • Dansgaard, W., S.J. Johnson, H.B. Clausen, D. Dahl-Jensen, N. Gundestrup, C.U. Hammer, & H. Oeschger (1984) North Atlantic climatic oscillations revealed by deep Greenland ice cores. In: Climate Processes and Climate Sensitivity, J.E. Hansen & T. Takahashi, eds., Geophysical Monographs 29, AGU Press, 288–298.

    Chapter  Google Scholar 

  • Deser, C., & M. Blackmon (1993) Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J. Climate 6, 1743–1753.

    Article  Google Scholar 

  • Dukowicz, J.K., R.D. Smith, & R.C. Malone (1993) A reformulation and implementation of the Bryan-Cox-Semtner ocean model on the Connection Machine. J. Atmos. Ocean. Tech. 10, 195–208.

    Article  Google Scholar 

  • Dukowicz, J.K., & R.D. Smith (1994) Implicit free-surface method for the Bryan-CoxSemtner ocean model. J. Geophys. Res. 99, 7991–8014.

    Article  Google Scholar 

  • DYNAMO (1997) DYnamics of North Atlantic MOdels: Simulation and assimilation with high resolution models, Report No 294, Institut fr Meereskunde, Kiel, Germany.

    Google Scholar 

  • Ebby, M., & G. Holloway (1994a) Grid transform for incorporating the Arctic in a global ocean model. Climate Dyn. 10, 241–247.

    Article  Google Scholar 

  • Ebby, M., & G. Holloway (1994b) Sensitivity of a large-scale ocean model to a parameterization of topographic stress. J. Phys. Ocean. 24, 2577–2588.

    Article  Google Scholar 

  • Ezer, T., & G.L. Mellor (1994) Diagnostic and prognostic calculations of the North Atlantic circulation and sea level using a sigma coordinate ocean model. J. Geophys. Res. 99, 14159–14171.

    Article  Google Scholar 

  • Gargett, A.E., & G. Holloway (1992) Sensitivity of the GFDL ocean model to different diffusivities for heat and salt. J. Phys. Ocean. 22, 1158–1177.

    Article  Google Scholar 

  • Garrett, C. (1991) Marginal mixing theories. Atmosphere-Ocean 29, 313–339.

    Article  Google Scholar 

  • Gent, P.R., & J.C. McWilliams (1983) Regimes of validity for balanced models. Dyn. Atmos. Oceans 7, 167–183.

    Article  Google Scholar 

  • Gent, P.R., & J.C. McWilliams (1990) Isopycnal mixing in ocean circulation models. J. Phys. Ocean. 20, 150–155.

    Article  Google Scholar 

  • Gent, P.R., J. Willebrand, T.J. McDougall, & J.C. McWilliams (1995) Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Ocean. 25, 463–474.

    Article  Google Scholar 

  • Gent, P.R., F.O. Bryan, G. Danabasoglu, S.C. Doney, W.R. Holland, W.G. Large, & J.C. McWilliams (1998) The NCAR Climate System Model global ocean component. J. Climate, in press.

    Google Scholar 

  • Gnanadesikan, A. (1998) Representing the bottom boundary layer in the GFDL ocean model: Model framework, dynamical impacts, and parameter sensitivity. J. Phys. Ocean., submitted.

    Google Scholar 

  • Haidvogel, D.B. & F.O. Bryan (1992) Ocean general circulation modeling. In: Climate System Modeling. Trenberth, K. ed., Oxford Press, 371–412.

    Google Scholar 

  • Haidvogel, D.B., E. Curchitser, M. Iskandarani, R. Hughes, & M. Taylor (1995) Global modeling of the ocean and atmosphere using the spectral element method. Atmosphere-Ocean, in press.

    Google Scholar 

  • Hall, M.M., & H.L. Bryden (1982) Direct estimates and mechanisms of ocean heat transport. Deep-Sea Res. 29, 339–359.

    Article  Google Scholar 

  • Hirst, A.C., & J.S. Godfrey (1993) The role of Indonesian throughflow in a global ocean GCM. J. Phys. Ocean. 23, 1057–1086.

    Article  Google Scholar 

  • Holloway, G. (1992) Representing topographic stress for large-scale ocean models. J. Phys. Ocean. 22, 1033–1046.

    Article  Google Scholar 

  • Hurlburt, H.E., P.J. Hogan, E.J. Metzger, W.J. Schmitz, & A.J. Wallcraft (1995) Dynamics of eddy-resolving models of the Pacific Ocean and the Sea of Japan. In: Workshop on Numerical Prediction of Oceanographic Conditions, Japan Meteorological Agency, Tokyo, 51–57.

    Google Scholar 

  • Ishikawa, I., Y. Yamanaka, & N. Suginohara (1994) Effects of presence of a circumpolar region on buoyancy-driven circulation. J. Oceanography 50, 247–263.

    Article  Google Scholar 

  • Ivchenko, V.O. & D.P. Stevens (1995) The zonal momentum balance in a realistic eddy resolving general circulation model of the Southern Ocean. J. Phys. Ocean., 26, 753–774.

    Article  Google Scholar 

  • Kagimoto, T., & T. Yamagata (1997) Seasonal transport variations of the Kuroshio: An OGCM simulation. J. Marine Research,in press.

    Google Scholar 

  • Kalnay, E., et al. (22 authors) (1996) The NCEP/NCAR 40-year reanalysis project. BAMS 77, 437–471.

    Article  Google Scholar 

  • Killworth, P.D. (1998) Eddy parameterisation in large scale flow. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 253–269.

    Chapter  Google Scholar 

  • Kraus, E.B., & S. Turner (1967) A one-dimensional model of the seasonal thermocline. II: The general theory and its consequences. Telles 19, 98–106.

    Article  Google Scholar 

  • Large, W.G., J.C. McWilliams, & S.C. Doney (1994) Oceanic vertical mixing: A review and a model with a non-local K-profile boundary layer parameterization. Rev. Geophys. 32, 363–403.

    Article  Google Scholar 

  • Large, W.G., G. Danabasoglu, S. Doney, &J.C. McWilliams (1997) Sensitivity to surface forcing and boundary-layer mixing in a global ocean model: annual-mean climatology. J. Phys. Ocean., in press.

    Google Scholar 

  • Large, W.G., & P.R. Gent (1998) Validation of vertical mixing in an equatorial ocean model using Large-Eddy Simulations and observations. J. Phys. Ocean., submitted.

    Google Scholar 

  • Leonard, B.P. (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering 19, 59–98.

    Article  Google Scholar 

  • Levitus, S. (1982) Climatological Atlas of the World Ocean. NOAA Prof. Pap. 13, U.S. Gov. Print. Off., 173 p.

    Google Scholar 

  • Levitus, S., R. Burgett, & T.P. Boyer (1994) World Ocean Atlas 11994: Volume 3, Salinity. NOAA Atlas NESDES 3, U.S. Gov. Print. Off., 99 p.

    Google Scholar 

  • Li, X., Y. Chao, J.C. McWilliams, and L.-L. Fu (1998) Sensitivity to vertical mixing in a Pacific Ocean General Circulation Model. Geophys. Res. Lett., submitted.

    Google Scholar 

  • Lunkeit, F., R. Sausen, & J.M. Oberhuber (1996) Climate simulations with a global coupled atmosphere-ocean model ECHAM2/OPYC. Part I: present-day climate and ENSO events. Climate Dyn. 12, 195–212.

    Article  Google Scholar 

  • MacDonald, A.M., & C. Wunsch (1996) An estimate of global ocean circulation and heat fluxes. Nature 382, 436–439.

    Article  Google Scholar 

  • Manabe, S., & K. Bryan (1969) Climate calculations with a combined ocean-atmosphere model. J. Atmos. Sci. 26, 786–789.

    Article  Google Scholar 

  • Marotzke, J. (1997) Boundary mixing and the dynamics of three-dimensional thermohaline circulations. J. Phys. Ocean. 27 1713–1728.

    Article  Google Scholar 

  • Marshall, J. (1981) On the parameterization of geostrophic eddies in the ocean. J. Phys. Ocean. 11, 257–271.

    Article  Google Scholar 

  • Marshall, J., C. Hill, L. Perelman, & A. Adcroft (1997) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res. 102, 5733–5752.

    Article  Google Scholar 

  • McDougall, T.J. (1987) Neutral surfaces. J. Phys. Ocean. 17, 1950–1964.

    Article  Google Scholar 

  • McWilliams, J.C., & J.H.S. Chow (1981) Equilibrium geostrophic turbulence: I. A reference solution in a 0—plane channel. J. Phys. Ocean. 11, 921–949.

    Article  Google Scholar 

  • McWilliams, J.C., N.J. Norton, P.R. Gent, & D.B. Haidvogel (1990) A linear balance model of wind-driven, mid-latitude ocean circulation. J. Phys. Ocean. 20, 1349–1378.

    Article  Google Scholar 

  • McWilliams, J.C. (1996) Modeling the oceanic general circulation. Annual Rev. of Fluid Mech. 28, 1–34.

    Google Scholar 

  • McWilliams, J.C., G. Danabasoglu, & P.R. Gent (1996) Tracer budgets in the Warm Water Sphere. Tellus 48A, 179–192.

    Google Scholar 

  • McWilliams, J.C., & J.M. Restrepo (1998) The wave-driven ocean circulation.

    Google Scholar 

  • Preprint. Mellor, G., & T. Yamada (1982) Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851–875.

    Article  Google Scholar 

  • Merryfield, W.J., & G. Holloway (1998) Eddy fluxes and topography in stratified quasigeostrophic models. Preprint.

    Google Scholar 

  • Munk, W.H., & E. Palmen (1951) Note on the dynamics of the Antarctic Circumpolar Current. Tellus 3, 53–55.

    Article  Google Scholar 

  • Owens, W.B., & F.P. Bretherton (1978) A numerical study of mid-ocean mesoscale eddies. Deep-Sea Res. 25, 1–14.

    Article  Google Scholar 

  • Pacanowski, R., & G. Philander (1981) Parameterization of vertical mixing in numerical models of tropical oceans. J. Geophys. Res. 11, 1443–1451.

    Google Scholar 

  • Pinardi, N., A. Rosati, & R.C. Pacanowski (1995) The sea surface pressure formulation of rigid lid models. Implications for altimetric data assimilation studies. Jour. Marine Systems 6, 109–120.

    Article  Google Scholar 

  • Polzin, K.L., J.M. Toole, J.R. Ledwell, & R W Schmitt (1997) Spatial variability of turbulent mixing in the abyssal ocean. Science 276, 93–96.

    Article  Google Scholar 

  • Pratt, L.J., ed. (1990) The Physical Oceanography of Sea Straits, Dordrecht, Kluwer, 587 p.

    Book  Google Scholar 

  • Price, J.F., & M.O. Beringer (1994) Outflows and deep water production by marginal seas. Prog. In Ocean. 33, 161–200.

    Article  Google Scholar 

  • Redi, M.H. (1982) Oceanic isopycnal mixing by coordinate rotation. J. Phys. Ocean 12, 1154–1158.

    Article  Google Scholar 

  • Rhines, P.B. (1977) The dynamics of unsteady currents. In: The Sea VI Goldberg, E., ed., New York, Wiley, 189–318.

    Google Scholar 

  • Rhines, P.B., & W.R. Young (1982) Homogenization of potential vorticity in planetary gyres. J. Fluid Mech. 122, 342–367.

    Article  Google Scholar 

  • Roberts, M.J., A.L. New, R.A. Wood, & R. Marsh (1995) An intercomparison of a Bryan-Cox type ocean model and an isopycnic ocean model. Part 1: the subpolar gyre and high-latitude processes. J. Phys. Ocean., 26, 1495–1527.

    Article  Google Scholar 

  • Roberts, M., & D. Marshall (1997) Do we require adiabatic dissipation schemes in eddy-resolving ocean models? Preprint.

    Google Scholar 

  • Sakamoto, T., & T. Yamagata (1996) Seasonal transport variations of the wind-driven circulation in a tow-layer planetary-geostrophic model with a continental slope. J. Mar. Res. 54, 261–284.

    Google Scholar 

  • Salmon, R., G. Holloway, & M.C. Hendershott (1976) The equilibrium statistical me-chanics of simple quasi-geostrophic models. J. Fluid Mech. 75, 691–703.

    Article  Google Scholar 

  • Saravanan, R., & J.C. McWilliams (1995) Multiple equilibria, natural variability, and climate transitions in an idealized ocean-atmosphere model. J. Climate 8, 2296–2323.

    Article  Google Scholar 

  • Saravanan, R., & J.C. McWilliams (1997) Stochasticity and spatial resonance in interdecadal climate fluctuations. J. Climate, in press.

    Google Scholar 

  • Siegel, A., P. Berloff, J.C. McWilliams, J.B. Weiss, & I. Yavneh (1998) The quasigeostrophic dynamics of wind-driven ocean gyres at very high resolution. Preprint.

    Google Scholar 

  • Shchepetkin, A., & J.C. McWilliams (1997) Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Monthly Weather Review, in press.

    Google Scholar 

  • Smith, R.D., S. Kortas, & B. Meltz (1995) Curvilinear coordinates for global ocean models. Los Alamos Technical report, LAUR-95–1146.

    Google Scholar 

  • Smith, R.D., M.E. Maltrud, M.W. Hecht, & F.O. Bryan (1998) Numerical simulation of the North Atlantic Ocean at 1/10°. Preprint.

    Google Scholar 

  • Sommeria, J. (1998) Statistical mechanics of potential vorticity for parameterizing mesoscale eddies. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 303–326.

    Chapter  Google Scholar 

  • Song, Y., & D. Haidvogel (1994) A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comp. Phys. 115, 228–244.

    Article  Google Scholar 

  • Suginohara, N., & M. Fukasawa (1988) Set-up of deep circulation in multi-level numerical models. J. Ocean Soc. Japan 44, 315–336.

    Google Scholar 

  • Toole, J. (1998) Turbulent mixing in the ocean: Intensity, causes, and consequences. In Ocean Modeling and Parameterization, E.P. Chassignet and J. Verron (Eds.), Kluwer Academic Publishers, 171–191.

    Chapter  Google Scholar 

  • Treguier, A.M., & J.C. McWilliams (1990) Topographic influences on wind-driven, stratified flow in a /3—plane channel• an idealized model of the Antarctic Circumpolar Current. J. Phys. Ocean. 20, 324–343.

    Article  Google Scholar 

  • Treguier, A. M., J.K. Dukowicz, & K. Bryan (1996) Properties of nonuniform grids used in ocean general circulation models. J. Geophys. Res. 101, 20877–20881.

    Article  Google Scholar 

  • Treguier, A.M., I.M. Held, & V.D. Larichev (1997) On the parameterization of quasigeostrophic eddies in primitive equation ocean models. J. Phys. Ocean. 27, 567–580.

    Article  Google Scholar 

  • Trenberth, K.E., and A. Solomon (1994) The global heat balance: heat transports in the atmosphere and ocean. Climate Dyn. 10 107–134.

    Article  Google Scholar 

  • Visbeck, M., J. Marshall, T. Haine, & M. Spall (1997) Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Ocean. 27, 381–402.

    Article  Google Scholar 

  • Wajsowicz, R.C. (1993) A consistent formulation of the anisotropic stress tensor for use in models of the large-scale ocean circulation. J. Comp. Phys. 105, 333–338.

    Article  Google Scholar 

  • Wijffels, S.E., R.W. Schmitt, H.L. Bryden, & A. Stigebrandt (1992) Transport of fresh-water by the oceans. J. Phys. Ocean. 22 155–162.

    Article  Google Scholar 

  • Yavneh, I., & J.C. McWilliams (1995) Robust multigrid solution of the shallow-water balance equations. J. Comp. Physics 119, 1–25.

    Article  Google Scholar 

  • Yin, F.L., & I.Y. Fung (1991) On the net diffusivity in ocean general circulation models. J. Geophys. Res. 96, 10773–10776.

    Article  Google Scholar 

  • Zhang, J., R.W. Schmitt, & R.-X. Huang (1998) Sensitivity of GFDL Modular Ocean Model to the parameterization of double-diffusive processes. J. Phys. Ocean., in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McWilliams, J.C. (1998). Oceanic General Circulation Models. In: Chassignet, E.P., Verron, J. (eds) Ocean Modeling and Parameterization. NATO Science Series, vol 516. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5096-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5096-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5229-7

  • Online ISBN: 978-94-011-5096-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics