Skip to main content

Towards Multiscale Dynamic Data Reconciliation

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 353))

Abstract

Although reconciliation of steady-state process data is routinely applied in industrial practice, the theoretical understanding of the problem and its adequate formulation in a dynamic setting is still not mature. Existing formulation approaches are based on stochastic filters, deterministic observers or mathematical programming techniques. In this contribution, we suggest a general problem formulation of dynamic data reconciliation based on the theory of ill-posed problems and their regularizations. It results in a large-scale dynamic optimization problem which requires efficient numerical solution methods in real-time under strict limitations of computational resources. We explore a novel mathematical framework for the discretization of the dynamic optimization problem and the solution of the discretized nonlinear programming problem based on multiscale approximation. The framework attempts to integrate signal processing and optimization finally leading to a fully adaptive and highly efficient numerical treatment which always provides the best possible estimate which is attainable in the allotted time period.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Abel, A. Helbig, and W. Marquardt. Optimization approaches to control-integrated design of industrial batch reactors. NATO ASI on Nonlinear Model Based Process Control. This volume. pp. 513–551.

    Google Scholar 

  2. J.S. Albuquerque and L.T. Biegler. Decomposition algorithmus for on-line estimation with nonlinear DAE models. Comput. Chem. Eng., 19:1031–1039, 1995.

    Article  CAS  Google Scholar 

  3. J.S. Albuquerque and L.T. Biegler. Data reconcilliation and gross-error detection for dynamic systems. AIChE J., 42(10):2841–2856,1996.

    Article  CAS  Google Scholar 

  4. J.S. Albuquerque, V. Gopal, G.H. Stauss, L.T. Biegler, and B.E. Ydstie. Interior point SQP strategies for structured process optimization problems. Comput. Chem. Eng., 21(Suppl.):853–859, 1997.

    Google Scholar 

  5. M.J. Bagajewicz and Q. Jiang. Integral approach to plant linear dynamic reconciliation. AIChE J., 43(10):2546–2558, 1997.

    Article  CAS  Google Scholar 

  6. B. Bakshi and G. Stephanopoulos. Representation of process trends: III multi-scale extraction of trends from process data. Comput. Chem. Eng., 18(4), 1994.

    Google Scholar 

  7. B. Bakshi and G. Stephanopoulos. Compression of chemical process data by functional approximation and feature extraction. AIChE J., 42(2):477–492, 1996.

    Article  CAS  Google Scholar 

  8. J.H. Bramble and J.E. Pasciak. A preconditioning technique for indefinite systems resulting from mixed approximations for elliptic problems. Math. Comp., 50:1–17, 1988.

    Article  Google Scholar 

  9. A.G. Bruce, D.L. Donoho, H.Y. Gao, and R.D. Martin. Smoothing and robust wavelet analysis. In Proceedings on Computational Statistics. 11th Symposium, Berlin, volume 4, pages 531–547. COMPSTAT, 1994.

    Google Scholar 

  10. A. Chambolle, R. DeVore, N.Y. Lee, and J. Lucier. Nonlinear wavelet image processing: Varational problems, compression, and noise removal through wavelet shrinkage. 1996.

    Google Scholar 

  11. C.K. Chui. An Introduction to Wavelets. Academic Press, Boston, 1992.

    Google Scholar 

  12. H. Cox. On the estimation of state variables and parameters for noisy dynamic systems. IEEE Trans. Auto. Cont., pages 5–12, January 1964.

    Google Scholar 

  13. C.M. Crowe. Data reconciliation — progress and challage. J. Proc. Cont., 6:89–98, 1996.

    Article  CAS  Google Scholar 

  14. S.A. Dadebo and K.B. McAuley. Dynamic optimization of constrained chemical engineering problems using dynamic programming. Comput. Chem. Eng., 19(5):513–525, 1995.

    Article  CAS  Google Scholar 

  15. W. Dahmen. Wavelet and Multiscale Methods for Operator Equations. Acta Numerica, pages 55–228, 1997.

    Google Scholar 

  16. W. Dahmen, A. Kunoth, and K. Urban. Biorthogonal spline-wavelets on the interval — stability and moment conditions. IGPM-Report 129, RWTH Aachen, 1996.

    Google Scholar 

  17. W. Dahmen, A. Kunoth, and K. Urban. Wavelets in Numerical Analysis and their Quantitative Properties. In A.Le Méhauté, C. Rabut, and L.L. Schumaker, editors, Surface Fitting and Multiresolution Methods, pages 93–130. Vanderbilt University Press, 1997.

    Google Scholar 

  18. W. Dahmen and C.A. Micchelli. Using the refinement equation for evaluating integrals of wavelets. SIAM J. Numer. Anal., 30(2):507–537, 1993.

    Article  Google Scholar 

  19. W. Dahmen, S. Prössdorf, and R. Schneider. Multiscale methods for pseudo-differential equations on smooth manifolds. In C.K. Chui, L. Montefusco, and L. Puccio, editors, Proceedings of the International Conference on Wavelets: Theory, Algorithms, and Applications, pages 385–424. Academic Press, San Diego, 1994.

    Google Scholar 

  20. M. Darouach and M. Zasadzinski. Data reconciliation in generalized linear dynamic systems. AIChE J., 37:193–201, 1991.

    Article  CAS  Google Scholar 

  21. I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Math., Philadelphia, 1992.

    Book  Google Scholar 

  22. C. de Boor. A Practical Guide to Splines. Springer-Verlag, New York, 1978.

    Book  Google Scholar 

  23. R.A. DeVore, B. Jawerth, and B. Lucier. Image compression through wavelet transform coding. IEEE Trans. Information Theory, 38(2):719–746, 1992.

    Article  Google Scholar 

  24. D. Donoho and I. Johnstone. Ideal spatial adaption by wavelet shrinkage. Biometrika, 81:425–455,1994.

    Article  Google Scholar 

  25. D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage: Asymptopia? J. Roy. Statist. Assoc, 90:301–369, 1995.

    Article  Google Scholar 

  26. D.R. Kuehn and H. Davidson. Computer control. Chemical Engineering Progress, 57(6):44–47, 1961.

    CAS  Google Scholar 

  27. H.W. Engl. Regularization methods for the stable solution of inverse problems. Surv. Math. Ind., 3:71–143, 1993.

    Google Scholar 

  28. H.W. Engl, M.H. Hanke, and A. Neubauer. Regularization of Inverse Problems. Kluwer Academic Publishers, 1996.

    Google Scholar 

  29. W.F. Feehery and P.I. Barton. Dynamic simulation and optimization with inequality path constraints. Comput. Chem. Eng., 20(Suppl.):S707–S712, 1996.

    Article  CAS  Google Scholar 

  30. J. Fröhlich and K. Schneider. An adaptive wavelet-vaguelette algorithm for the solution of nonlinear PDEs. Preprint SC. ZIB, (95-28), 1997.

    Google Scholar 

  31. G.F. Froment and K.B. Bischoff. Chemical Reactor Analysis and Design. John Wiley & Sons, 1990.

    Google Scholar 

  32. G.A. Almasy. Principles of dynamic balancing. AIChE J., 36:1321–1330, 1990.

    Article  CAS  Google Scholar 

  33. A. Gelb. Applied Optimal Estimation. MIT Press, 1974.

    Google Scholar 

  34. J. Gertler and G.A. Almasy. Balance calculation through dynamic system modeling. Automatica, 9:79–85, 1973.

    Article  Google Scholar 

  35. D.M. Himmelblau and T.W. Karjala. Rectification of data in a dynamic process using artificial neural networks. Comput. Chem. Eng., 20:805–812, 1996.

    Article  CAS  Google Scholar 

  36. S.-S. Jang, B. Joseph, and H. Mukal. Comparison of two approaches to on-line parameter and state estimation of nonlinear systems. Ind. Eng. Chem. Proc. Des. Dev., 25:809–814, 1986.

    Article  CAS  Google Scholar 

  37. A.H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press Inc., 1970.

    Google Scholar 

  38. T. Johansen. On Tikhonov regularization, bias and variance in nonlinear system identification. Automatica, 33(3):441–446, 1997.

    Article  Google Scholar 

  39. T.W. Karjala and D.M. Himmelblau. Dynamic data rectification by recurrent neural networks vs. traditional methods. AIChE J., 40(11):1865–1875, 1994.

    Article  CAS  Google Scholar 

  40. I.-W. Kim, M.J. Liebmann, and T.F. Edgar. A sequential error-in variables method for non-linear dynamic systems. Comput. Chem. Eng., 15:663–670, 1991.

    Article  CAS  Google Scholar 

  41. I.-W. Kim, S.W. Park, and T.F. Edgar. Data reconciliation for input-output models in nonlinear dynamic systems. Korean J. Chem. Engng, 13:211–215, 1996.

    Article  CAS  Google Scholar 

  42. J.L.A. van Koolen. Plant operation in the future. Comput. Chem. Eng., 18:S477–S481, 1994.

    Article  Google Scholar 

  43. J. Lee, Y. Chikkula, Z. Yu, and J. Kantor. Improving computational efficiency of model predictive control algorithm using wavelet transformation. Int. J. Control, 61(4):859–883, 1995.

    Article  Google Scholar 

  44. M.J. Liebmann, T.F. Edgar, and L.S. Lasdon. Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques. Comput. Chem. Eng., 16:963–986, 1992.

    Article  Google Scholar 

  45. L.C. Lin and C.-C. Kuo. Signal extrapolation in noisy data with wavelet representation. In Proceedings of the SPIE, volume 2028, pages 156–167. The International Society for Optical Engineering, 1993.

    Article  Google Scholar 

  46. J.S. Logsdon and L.T. Biegler. Decomposition strategies for large-scale dynamic optimization problems. Chem. Eng. Sci., 47(4):851–864, 1992.

    Article  CAS  Google Scholar 

  47. W. Marquardt. Numerical methods for the simulation of differential-algebraic process models. In R. Berber, editor, Methods of Model-Based Control, NATO-ASI Series, pages 42–79. Kluwer Press, 1995.

    Google Scholar 

  48. K.F. McBrayer, T.F Edgar, and L.S. Lasdon. Bias detection and estimation in dynamic data reconciliation. J. Proc. Cont., 5, 1995.

    Google Scholar 

  49. A. M’hamdi, A. Helbig, O. Abel, and W. Marquardt. Newton-type receding horizon control and state estimation — a case study. In J.J. Gertler, J.B. Cruz, and M. Peshkin, editors, Preprints of the 13th World Congress of IFAC, volume M, pages 121–126, San Francisco, 30 June–5 July 1996.

    Google Scholar 

  50. H. Michalska and D.Q. Mayne. Moving horizon observers. In IFAC Symposium NOLCOS’92, Bordeaux, France, 1992.

    Google Scholar 

  51. H. Michalska and D.Q. Mayne. Moving horizon observers and observer-based control. IEEE Trans. Aut. Contr. AC-40, pages 995–1006, 1995.

    Google Scholar 

  52. K.R. Muske and T.F. Edgar. Nonlinear state estimation. In M.A. Henson and D.E. Seborg, editors, Nonlinear Process Control. Prentice Hall, 1997.

    Google Scholar 

  53. K.R. Muske and J.B. Rawlings. Nonlinear moving horizon state estimation. In R. Berber, editor, Methods of Model-Based Control, NATO-ASI Series, pages 349–365. Kluwer Press, 1995.

    Google Scholar 

  54. Y. Ramamurthi, P.B. Sistu, and B.W. Bequette. Control-relevant dynamic data reconciliation and parameter estimation. Comput. Chem. Eng., 17(1):41–59, 1993.

    Article  CAS  Google Scholar 

  55. D. Robertson, J.H. Lee, and J.B. Rawlings. A moving horizon-based approach for least-squares estimation. AIChE J., 42(8):2209–2223, 1996.

    Article  CAS  Google Scholar 

  56. C. Schmid and L.T. Biegler. Quadratic programming methods for reduced hessian SQP. Comput. Chem. Eng., 18(9):817–832, 1994.

    Article  CAS  Google Scholar 

  57. C. Schmid, J. Nocedal, and L.T. Biegler. A reduced hessian method for large-scale constrained optimization. SIAM J. Optimization, 5(2):314, 1995.

    Article  Google Scholar 

  58. P.B. Sistu, R.S. Gopinath, and J.B. Rawlings. Computional issues in nonlinear predictive control. Comput. Chem. Eng., 17:361, 1993.

    Article  CAS  Google Scholar 

  59. G. Stephanopoulos, M. Dyer, and O. Karsligil. Multi-scale aspects in linear and nonlinear estimation and control. NATO ASI on Nonlinear Model Based Process Control. This volume.

    Google Scholar 

  60. G. Stephanopoulos, M. Dyer, and O. Karsligil. Multi-scale modeling, estimation and control of processing systems. Comput. Chem. Eng., 21(Suppl.):S797–S803, 1997.

    CAS  Google Scholar 

  61. O. von Stryk. Numerische Lösung optimaler Steuerungsprobleme: Diskretisierung, Parameteroptimierung und Berechnung der adjungierten Variablen. Reihe 8: Meß-, Steuerungs-und Regelungstechnik Nr. 441. VDI-Verlag, Düsseldorf, 1995.

    Google Scholar 

  62. P. Tanartkit and L.T. Biegler. Stable decomposition for dynamic optimization. Ind. Eng. Chem. Res., 34(4):1253–1266, 1995.

    Article  CAS  Google Scholar 

  63. D. Tieu, W.R. Cluett, and A. Penlidis. A comparison of collocation methods for solving dynamic optimization problems. Comput. Chem. Eng., 19(4):375–381, 1995.

    Article  CAS  Google Scholar 

  64. M.L. Tyler and M. Morari. Stability of constrained moving horizon estimation schemes. In R. Berber, editor, Nonlinear Model Based Process Control, NATO-ASI Series. Kluwer Press, 1998.

    Google Scholar 

  65. J. Unger, A. Kröner, and W. Marquardt. Structural analysis of differential-algebraic equation systems — theory and applications. Comput. Chem. Eng., 19(8):867–882, 1995.

    Article  CAS  Google Scholar 

  66. A. Uppal, W. H. Ray, and A. B. Poore. On the dynamic behaviour of continuous stirred tank reactors. Chem. Eng. Sci., 29:967–985, 1974.

    Article  CAS  Google Scholar 

  67. P. de Vallière and D. Bonvin. Application of estimation techniques to batch reactors — III: Modelling refinements which improve the quality of state and parameter estimation. Comput. Chem. Eng., 14(7):799–808, 1990.

    Article  Google Scholar 

  68. V.S. Vassiliadis, R.W.H. Sargent, and C.C. Pantelides. Solution of a class of multistage dynamic optimization problems. 1. Problems without path constraints. Ind. Eng. Chem. Res., 33(9):2111–2122, 1994.

    Article  CAS  Google Scholar 

  69. V.S. Vassiliadis, R.W.H. Sargent, and C.C. Pantelides. Solution of a class of multistage dynamic optimization problems. 2. Problems with path constraints. Ind. Eng. Chem. Res., 33(9):2123–2133, 1994.

    Article  CAS  Google Scholar 

  70. G.H. Weiss, J.A. Romagnoli, and K.A. Islam. Data reconciliation — an industrial case study. Comput. Chem. Eng., 20:1441–1449, 1996.

    Article  CAS  Google Scholar 

  71. S.J. Wright. Primal-Dual Interior-Point Methods. SIAM, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Marquardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Binder, T., Blank, L., Dahmen, W., Marquardt, W. (1998). Towards Multiscale Dynamic Data Reconciliation. In: Berber, R., Kravaris, C. (eds) Nonlinear Model Based Process Control. NATO ASI Series, vol 353. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5094-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5094-1_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6140-7

  • Online ISBN: 978-94-011-5094-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics