Skip to main content

Software Sensors and Adaptive Linearizing Control of Bioreactors

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 353))

Abstract

This paper is a short survey on methods which have been developed and applied in the field of dynamical modelling, analysis, monitoring and control design of bioprocesses over the past fifteen years. A key feature of the paper is to show how to incorporate the well-known knowledge about the dynamics of biochemical processes (basically, the reaction network and the material balances) in monitoring and control algorithms. These are moreover capable of dealing with the process uncertainty (in particular on the reaction kinetics) by introducing, for instance in the control algorithms, an adaptation scheme.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Bastin and D. Dochain. “On-line Estimation and Adaptive Control of Bioreactors”. Elsevier, Amsterdam, 1990.

    Google Scholar 

  2. P. Renard, D. Dochain, G. Bastin, H. Naveau, and E.J. Nyns. Adaptive control of anaerobic digestion processes, a pilot-scale application. Biotechnol. Bioeng., 31:287–294, 1988.

    Article  CAS  Google Scholar 

  3. P. Renard, V. Van Breusegem, N. Nguyen, H. Naveau, and E.J. Nyns. Implementation of an adaptive controller for the start-up and steady-state running of a biomethanation process operated in the cstr mode. Biotechnol Bioeng., 38:805–812, 1991.

    Article  CAS  Google Scholar 

  4. Y. Pomerleau and G. Viel. Industrial application of adaptive nonlinear control for baker’s yeast production. In N.M. Karim and G. Stephanopoulos, editors, Proc. 5th Int. Conf. Computer Appl. in Biotechnol., pages 315–318. Pergamon Press, Oxford, 1992.

    Google Scholar 

  5. B. Dahhou, G. Roux, and A. Chèruy. Linear and nonlinear adaptive control of alcoholic fermentation processes: experimental results. Int. J. Adaptive Control and Signal Processing, 7(3):213–233, 1993.

    Article  Google Scholar 

  6. L. Chen, G. Bastin, and V. Van Breusegem. A case study of adaptive nonlinear regulation of fed-batch biological reactors. Automatica, 31(1):55–65, 1995.

    Article  Google Scholar 

  7. I. Cornet, D. Dochain, B. Ramsay, and M. Perrier. Application of adaptive linearizing inferential control to a phb producing process. Biotechnology and Bio E, 1:96–102, 1995.

    Google Scholar 

  8. Y. Pomerleau, M. Perrier, and D. Bourque. Dynamics and control of the fed-batch production of poly-β-hydroxybutyrique by methylobacterium extorquens. Proc. 6th Int. Conf, Computer Appl. in Biotechnol, pages 107–112, 1995.

    Google Scholar 

  9. S. Bourrel. “Estimation et Commande d’un Procédé à Paramètres Répartis Utilisé pour le Traitement Biologique de l’Eau à Potabiliser”. PhD thesis, Université Paul Sabatier, Toulouse, France, 1996.

    Google Scholar 

  10. M.A. Henson and D. Seborg. Nonlinear control strategies for continuous fermenters. Chem. Eng. Sci., 47(4):821–835, 1992.

    Article  CAS  Google Scholar 

  11. J.M. Flaus, A. Cheruy, and J.M. Engasser. An adaptive controller for batch feed bioprocess. applicaton to lysine production. J. Proc. Cont., 1:271–281, 1991.

    Article  CAS  Google Scholar 

  12. B. Dahhou, J. Bordeneuve, and J.P. Babary. Multivariable long-range predictive control algorithm applied to a continuous flow fermentation process. Proc. World IFAC Congress, pages 393–397, 1991.

    Google Scholar 

  13. M.P. Golden, B.J. Pangrie, and B.E. Ydstie. Nonlinear adaptive optimization of a continuous bioreactor. Proc. AIChE 1986 National Meeting, Pap.125b, 1986.

    Google Scholar 

  14. J.G. Alvarez and J.G. Alvarez. Analysis and control of fermentation processes by optimal and geometric methods. Proc. ACC, 2:1112–1117, 1988.

    Google Scholar 

  15. K.A. Hoo and J.C. Kantor. Linear feedback equivalence and control of an unstable biological reactor. Chem. Eng. Comm., 46:385–399, 1986.

    Article  CAS  Google Scholar 

  16. D. Dochain and M. Perrier. Recent approaches to the dynamical modelling, analysis, monitoring and control design for nonlinear biopro-cesses. Recent Advances in Chemical Engineering, 2:215–251, 1995.

    Google Scholar 

  17. D. Dochain and M. Perrier. Dynamical modelling, analysis, monitoring and control design for nonlinear bioprocesses. Advances in Biochemical Engineering/Biotechnology, 56:147–197, 1997.

    Article  CAS  Google Scholar 

  18. M. DeTremblay and M. Perrier. Optimisation of fed-batch culture of hybridoma cells using dynamic programming: single and multi-feed cases. Bioprocess Eng., 7:229–234, 1992.

    Article  CAS  Google Scholar 

  19. M. DeTremblay, M. Perrier, C. Chavarie, and J. Archambault. Fed-batch culture of hybridoma cells: comparison of optimal control approach and closed-loop strategies. Bioprocess Eng. (in press), 1993.

    Google Scholar 

  20. V. Chotteau and G. Bastin. Identification of a reaction mechanism for a class of animal cell cultures. Proc. ICCAFT 5/IFAC-BIO 2, pages 215–218, 1992.

    Google Scholar 

  21. V. Chotteau. “A General Modeling Methodology for Animal Cell Cultures”. PhD thesis, Université Catholique de Louvain, Belgium, 1995.

    Google Scholar 

  22. J. Vanlmpe. “Modelling and Optimal Adaptive Control of Biotechno-logical Processes”. PhD thesis, Katholieke Universiteit Leuven, Belgium, 1993.

    Google Scholar 

  23. J. Vanlmpe, B. Nicolai, P. Van Rolleghem, J. Spriet, B. De Moor, and J. Van De Walle. Optimal control of the penicillin g fed-batch fermentation: an analysis of a modified unstructured model. Chem. Eng. Comm., 117:337–353, 1992.

    Article  Google Scholar 

  24. F.E. Mosey. Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci. Technol, 15:209–232, 1983.

    CAS  Google Scholar 

  25. B. Sonnleitner and O. Kappeli. Growth of saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of an hypothesis. Biotechnol. Bioeng., 28:927–937, 1986.

    Article  CAS  Google Scholar 

  26. R.P. Hamalainen, A. Halme, and A. Gyllenberg. A control model for activated sludge wastewater treatment process. Proc. 6 th IFAC World Congress, Boston, Paper 61:6, 1975.

    Google Scholar 

  27. S. Marsili-Libelli. Optimal control of the activated sludge process. Trans. Inst. Meas. Control, 6:146–152, 1984.

    Article  Google Scholar 

  28. A. Holmberg and J. Ranta. Procedures for parameter and state estimation of microbial growth process models. Automatica, 18:181–193, 1982.

    Article  Google Scholar 

  29. P.V. Danckwerts. Continuous flow systems, distribution of residence times. Chem. Eng. Sci., 2(1):1–13, 1953.

    Article  CAS  Google Scholar 

  30. D. Dochain. Contribution to the Analysis and Control of Distributed Parameter Systems with Application to (Bio)chemical Processes and Robotics. Technical report, Thèse d’Aggrégation de l’Enseignement Supérieur, UCL, Belgium, 1994.

    Google Scholar 

  31. D. Dochain and M. Perrier. Asymptotic observers for fixed bed reactors. Proc. ACC’93, pages 1179–1183, 1993.

    Google Scholar 

  32. D. Dochain, J.P. Babary, and M.N. Tali-Maamar. Modelling and adaptive control of nonlinear distributed parameter bioreactors via orthogonal collocation. Automatical 68:873–883, 1992.

    Article  Google Scholar 

  33. D. Dochain, N. Tali-Maamar, and J.P. Babary. Design of adaptive linearizing controllers for fixed bed reactors. Proc. ACC, pages 335–339, 1994.

    Google Scholar 

  34. H. Aoufoussi, M. Perrier, J. Chaouki, C. Chavarie, and D. Dochain. Feedback linearizing control of a fluidized-bed reactor. Can. J. Chem. Eng., 70:356–367, 1992.

    Article  CAS  Google Scholar 

  35. D. Dochain and B. Bouaziz. Approximation of the dynamical model of fixed bed reactors via a singular perturbation approach. Proc. IMACS Int. Symp. MIM-S2’93, pages 34–39, 1993.

    Google Scholar 

  36. B. Bouaziz and D. Dochain. Control analysis of fixed bed reactors: a singular perturbation approach. Proc. ECC’93, pages 1741–1745, 1993.

    Google Scholar 

  37. L. Chen. “Modelling, Identifiability and Control of Complex Biotech-nological Processes”. PhD thesis, Université Catholique de Louvain, Belgium, 1992.

    Google Scholar 

  38. G.R. Gavalas. “Nonlinear Differential Equations of Chemically Reacting Systems”. Springer Verlag, Berlin, 1968.

    Book  Google Scholar 

  39. M. Fjeld, O.A. Asbjornsen, and K.J. Astrom. Reaction invariants and their importance in the analysis of eigenvectors, state observability and controllability of the continuous stirred tank reactor. Chem. Eng. Sci., 29:1917–1926, 1974.

    Article  CAS  Google Scholar 

  40. V. VanBreusegem and G. Bastin. A singular perturbation approach to the reduced order dynamical modelling of reaction systems. Submitted for publication, 1995.

    Google Scholar 

  41. H. Kwakernaak and R. Sivan. “Linear Optimal Control Systems”. John Wiley, New York, 1972.

    Google Scholar 

  42. G. Stephanopoulos and K.-Y. San. Studies on on-line bioreactor identification. Biotechnol. Bioeng., 26:1176–1188, 1984.

    Article  CAS  Google Scholar 

  43. S.H. Lee, P. Tsobanakis, J.A. Phillips, and C. Georgakis. Issues in the optimization, estimation and control of fed-batch bioreactors using tendency models. Proc. ICCAFT 5/IFAC-BIO 2, Keystone, Colorado, 1992.

    Google Scholar 

  44. Y.J. Yoo, J. Hong, and R.T. Hatch. Sequential estimation of states and kinetic parameters and optimization of fermentation processes. Proc. ACC, 2:866–871, 1985.

    Google Scholar 

  45. G. Caminal, F.J. Lafuente, J. Lopez-Santin, M. Poch, and C. Sola. Application of the extended kalman filter to identification of enzymatic deactivation. Biotechnol. Bioeng., 24:366–369, 1987.

    Article  Google Scholar 

  46. G. Acuna, E. Latrille, and G. Corrieu. Biomass estimation using neural networks and the extended kalman filter. Proc. 6th Int. Conf. Computer Appl. in Biotechnol., pages 209–212, 1995.

    Google Scholar 

  47. L. Ljung. Asymptotic behavior of the extended kalman filter as a parameter estimator for linear systems. IEEE Trans. Aut. Cont., 24:36–50, 1979.

    Article  Google Scholar 

  48. G. Bastin and J. Levine. On state reachability of reaction systems. Proc. 29th CDC, pages 2819–2824, 1990.

    Google Scholar 

  49. D. Dochain and L. Chen. Local observability and controllability of stirred tank reactors. J. Process Control, 2(3):139–144, 1992.

    Article  CAS  Google Scholar 

  50. K.S. Narendira and A.M. Annaswamy. “Stable Adaptive Systems”. Prentice-Hall, Englewood Cliffs, NJ, 1989.

    Google Scholar 

  51. R. Marino. Adaptive observers for single output nonlinear systems. IEEE Trans. Aut. Cont, 35:1054–1058, 1990.

    Article  Google Scholar 

  52. D. Dochain. “On-line Parameter Estimation, Adaptive State Estimation and Adaptive Control of Fermentation Processes”. PhD thesis, Université Catholique de Louvain, Belgium, 1986.

    Google Scholar 

  53. Y. Pomerleau and M. Perrier. Estimation of multiple specific growth rates in bioprocesses. AIChE J., 36(2):207–215, 1990.

    Article  CAS  Google Scholar 

  54. Y. Pomerleau. “Modélisation et Contrôle d’un Procédé Fed-batch de Culture des Levures à Pain Saccharomyces cerevisiae”. PhD thesis, Ecole Polytechnique de Montréal, Canada, 1990.

    Google Scholar 

  55. M. Perrier and D. Dochain. Evaluation of control strategies for anaerobic digestion processes. Int. J. Adaptive Cont. Signal Proc, 7(4):309–321, 1993.

    Article  Google Scholar 

  56. D. Dochain and M. Perrier. Adaptive linearizing control of activated sludge processes. Proc. Control Systems’ 92, pages 211–215, 1992.

    Google Scholar 

  57. A. Holmberg. A microprocessor-based estimation and control system for the activated sludge process. In A. Halme (Ed.), Modelling and Control of Biotechnical Processes, Pergamon:111–120, 1983.

    Google Scholar 

  58. M. Khone. Practical experiences with a new on-line bod measuring device. Env. Technol. Letters, 6:546–555, 1985.

    Article  Google Scholar 

  59. S. Marsili-Libelli. Modelling, identification and control of the activated sludge process. Advances in Biochemical Enginering/Biotechnology, 38:90–148, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dochain, D., Perrier, M. (1998). Software Sensors and Adaptive Linearizing Control of Bioreactors. In: Berber, R., Kravaris, C. (eds) Nonlinear Model Based Process Control. NATO ASI Series, vol 353. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5094-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5094-1_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6140-7

  • Online ISBN: 978-94-011-5094-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics