Skip to main content

Automated Station-Keeping for Satellite Constellations

  • Conference paper

Part of the book series: Space Technology Proceedings ((SPTP,volume 1))

Abstract

The on-orbit control of future satellite constellations poses a great challenge. New approaches are required which result in control systems that are flexible, reliable, scaleable, and efficient. Such approaches must be capable of maintaining constellation level station-keeping requirements. Autonomy is desirable to minimize the system operations center activity, and to allow rapid response to on-orbit failures. This work develops methods for the maintenance of satellite constellations that achieve some of the goals identified above. Strategies employing these methods are applied to analyze the control and coverage characteristics of the Mobile Communications Holdings Inc. EllipsoTM Constellation. The Automated Station-Keeping Simulator (ASKS), a software package developed for this project, is described.

This work was supported under the Draper Laboratory IR&D Program during DFY’s 96 and 97.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gropp, W., Lusk, E., & Skjellum A., Using MPI: Portable Parallel Programming with the Message-Passing Interface, MIT Press, Cambridge, MA, 1995

    Google Scholar 

  2. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., & Dongarra, J., MPI: The Complete Reference, MIT Press, Cambridge, MA, 1996

    Google Scholar 

  3. Hulkower, Neal D., “A Reevaluation of EllipsoTM, Globalstar, IRIDIUMTM/SM and OdysseyTM,” presentation at Volpe Transportation Center, Cambridge, MA, 18 October 1994, copies available from Jack Fischer, Draper Laboratory: 617-258-1559

    Google Scholar 

  4. Castiel, D., Draim, J.E., & Brosius, J.W., “Elliptical Orbit Satellite System and Deployment with Controllable Coverage Characteristics,” United States Patent Number 5, 582, 367, 10 Dec 1996

    Google Scholar 

  5. Draim, J.E. & Kacena, T.J., “Populating the Abyss — Investigating More Efficient Orbits,” 6th Annual AIAA/USU Conference on Small Satellites, Sept. 21–24 1992

    Google Scholar 

  6. Castiel, D., Brosius, J.W., & Draim, J.E., “EllipsoTM: Coverage Optimization Using Elliptic Orbits,” Paper AIAA-94-1098-CP, 15th AIAA International Communications Satellite Systems Conference, 1994

    Google Scholar 

  7. Castiel, D. & Draim, J.E., “The EllipsoTM Mobile Satellite System,” Proceedings of the Fourth International Mobile Satellite Conference, Ottawa, Canada, June 6–8 1995

    Google Scholar 

  8. Draim, J. & Castiel, D., “Optimization of the Borealis and Concordia Sub-Constellations of the Ellipso Mobile Communications System,” IAF Paper 96-A.1.01, 47th International Astronautical Congress, 7–11 October 1996, Beijing, China

    Google Scholar 

  9. Sabol, Christopher, Application of Sun-Synchronous Critically Inclined Orbits to Global Personal Communications Systems, MS Thesis, MIT, Cambridge, MA, November 1994

    Google Scholar 

  10. Sabol, C, Cefola, P.J., and Metzinger, R.W. “,Application of Sun-Synchronous Critically Inclined Orbits to Global Personal Communications Systems”, Paper No 95-222, AAS/AIAA Spaceflight Mechanics Conference, Albuquerque, New Mexico, February, 1995

    Google Scholar 

  11. Sabol, C, Draim, J., and Cefola, P.J., “Refinment of a Sun-Sychrnonous, Critically Inclined Orbit for the Ellipso Personal Communication System”, The Journal of Astronautical Sciences, Vol 44, No. 4, October-December 1996, pp. 467–489[50]

    Google Scholar 

  12. Roy, A. E., Orbital Motion, 3rd Ed., Adam Hilger, Bristol, 1988

    MATH  Google Scholar 

  13. Shah, Naresh, “Preliminary Perturbation Analysis of ELLIPSO Concordia Orbit,” Draper Intralab Memorandum E50-96-155, 11 Apr 1996, available from Dr. Paul Cefola, C S Draper Laboratory, Cambridge, MA

    Google Scholar 

  14. Barker, W.N., Casali, S. J., & Wallner, R. N., “The Accuracy of General Perturbation and Semianalytic Satellite Ephemeris Theories,” AAS Paper 95-432, AAS/AIAA Astrodynamics Specialist Conference, Halifax, Nova Scotia, August 1995

    Google Scholar 

  15. Fieger, Martin E., An Evaluation of Semianalytical Satellite Theory Against Long Arcs of Real Data For Highly Eccentric Orbits, MS Thesis, MIT, Cambridge, MA, January 1987

    Google Scholar 

  16. Carter, David, “Jacchia-Roberts Files from Schatten’s Data,” Draper Intralab Memorandum to Paul Cefola, ESD 94-188, March 24, 1994

    Google Scholar 

  17. Kantsiper, Brian, Weiss, Stanley, “An Analytic Approach to Calculating Earth Coverage”, Paper AAS 97-620, AAS/AIAA Astrodynamics Specialist Conference, Sun Valley, Idaho, August 4–7, 1997

    Google Scholar 

  18. Garrison, T., Ince, M., Pizzicaroli, J., & Swan, P., “IRIDIUM® Constellation Dynamics: The Systems Engineering Trades,” Paper IAF-95-U.2.04, 46th International Astronautical Congress, Oslo, Norway, Oct. 2–6 1995

    Google Scholar 

  19. Lawden, D. F., “Optimal Trajectories for Space Navigation,” London, Butterworths, 1963

    MATH  Google Scholar 

  20. Lion, R. M. & Handelsman, M., “Primer Vector on Fixed-Time Impulsive Trajectories, AIAA Journal, Vol 6, 1968, pp. 127–132

    Article  MATH  Google Scholar 

  21. Jezewski, D. J. & Rozendaal, H. L., “An Efficient Method for Calculating Optimal Free-Space N-Impulse Trajectories,” AIAA Journal, Vol 6, 1968, pp. 2160–2165

    Article  MATH  Google Scholar 

  22. Prussing, J. E., “Optimal Impulsive Linear Systems: Sufficient Conditions and Maximum Number of Impulses,” Journal of Astronautical Sciences, Vol 43, No 2, Apr-Jun 1995, pp. 195–206

    MathSciNet  Google Scholar 

  23. Taur, D. R., Coverstone-Carroll, V., & Prussing J. E., “Optimal Impulsive Time-Fixed Orbital Rendezvous and Interception with Path Constraints,” Journal of Guidance, Control & Dynamics, Vol 18, No 1, Jan-Feb 1995, pp. 54–60

    Article  Google Scholar 

  24. Prussing, J. E. & Chiu, J. H., “Optimal Multiple-Impulse Time-Fixed Rendezvous Between Circular Orbits,” Journal of Guidance, Control & Dynamics, Vol 9, No 1, Jan-Feb 1986, pp. 17–22

    Article  MATH  Google Scholar 

  25. Prussing, J. E. & Conway, B. A., “Optimal Terminal Maneuver for a Cooperative Impulsive Rendezvous,” Journal of Guidance, Control & Dynamics, Vol 12, No 3, May-Jun 1989, pp. 433–435, also Errata, Vol 12, No 4, Jul–Aug 1989, p. 608

    Article  Google Scholar 

  26. Gross, L. R. & Prussing, J. E., “Optimal Multiple-Impulse Direct-Ascent Fixed-Time Rendezvous,” AIAA Journal, Vol 12, No 7, July 1974, pp. 885–889

    Article  MATH  Google Scholar 

  27. Carter, T. & Brient, J., “Linear Impulsive Rendezvous Problem,” Journal of Optimization Theory and Applications, Vol 86, 1995, pp. 553–584

    Article  MathSciNet  MATH  Google Scholar 

  28. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P., Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd Edition, Cambridge University Press, 1992

    Google Scholar 

  29. Cefola, P., Proulx, R., et.al., “The RADARSAT Flight Dynamics System: An Extensible, Portable, Workstation-based Mission Support System,” AIAA Paper 94-3726, AIAA/AAS Astrodynamics Conference, 1–3 August 1994, Scottsdale, AZ

    Google Scholar 

  30. Early, L. W., “A Portable Orbit Generator Using Semianalytical Satellite Theory,” Paper 86-2164-CP, AIAA/AAS Astrodynamics Conference, Williamsburg, Va, August 1986

    Google Scholar 

  31. Neelon, Joseph G., Jr., Cefola, Paul J., and Proulx, Ronald J., “Current Development of the Draper Semianalytical Satellite Theory Standalone Orbit Propagator Package”, Paper No. AAS 97-731, AAS/AIAA Astrodynamics Specialists Conference, Sun Valley, Idaho, Aug, 1997

    Google Scholar 

  32. Wallace, S., Parallel Orbit Propagation and the Analysis of Satellite Constellations, CSDL-T-1245, Master of Science Thesis, Massachusetts Institute of Technology, Cambridge, MA, June 1995

    Google Scholar 

  33. Giest, A., et al. PVM: Parallel Virtual Machine A Users Guide and Tutorial for Networked Parallel Computing., Cambridge, MA: The MIT Press. 1994

    Google Scholar 

  34. McInnes, Colin, “Potential Function Methods for Autonomous Spacecraft Guidance and Control,” AAS Paper 95-447, AAS/AIAA Astrodynamics Specialist Conference, Halifax, Nova Scotia, August 14–17, 1995

    Google Scholar 

  35. McInnes, Colin R., “Autonomous Proximity Manoeuvering [sic] Using Artificial Potential Functions,” ESA Journal, Vol 17, 1993, pp. 159–169

    Google Scholar 

  36. McInnes, Colin R., “Autonomous Ring Formation for A Planar Constellation of Satellites,” Journal of Guidance, Vol 18, No 5, pp. 1215–1217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Shah, N.H., Proulx, R.J., Kantsiper, B., Cefola, P.J., Draim, J. (1998). Automated Station-Keeping for Satellite Constellations. In: van der Ha, J.C. (eds) Mission Design & Implementation of Satellite Constellations. Space Technology Proceedings, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5088-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5088-0_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6137-7

  • Online ISBN: 978-94-011-5088-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics