Advertisement

Spin-Peierls Magnet CuGeO3

  • G. A. Petrakovskii
Chapter
Part of the NATO Science Series book series (ASHT, volume 55)

Abstract

The study of the magnetic and resonance properties of the single crystal CuGeO3were initiated by Petrakovskii and co-authors who first discovered the sharp decrease of the magnetic susceptibility for three main axes of the crystal at the temperature below 14 K. Later Hase and co-authors also observed the similar effect and interpreted it as a spin-Peierls transition. The effect was interpreted in terms of the S=1/2 uniform antiferromagnetic chain which is settled down in the 3D crystal below some critical temperature, and a second order phase transition to a dimerizated singlet state with the energy gap spectrum of magnetic excitations is likely to arise. The main investigations proving that the CuGeO3crystal is the spin-Peierls magnet are discussed in this review with the special emphasis on the following facts: the singletization of the ground magnetic state, the presence of the structural phase transition corresponding to the lattice doubling along the axis of the chain, the energy gap character of the magnetic excitation spectrum, the anomaly of specific heat at the transition temperature, and the specification of the magnetic phase diagram. The magnetoelastic properties of the CuGeO3crystal arealso discussed here.

Keywords

Electron Spin Resonance Magnetic Susceptibility Inelastic Neutron Scattering Magnetic Excitation Resonance Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Petrakovskii, G.A., Sablina, K.A., Vorotinov, A.M., Kruglik, A.I., Klimenko, A.G., Balayev, A.D., and Aplesnin, S.S. (1990) The magnetic and resonance properties of the crystal and amorphous CuGeO3, Soy. Phys.: JETP, 71772–780.Google Scholar
  2. 2.
    Hase, M., Terasaki, I., Uchinokura, K. (1993) Observation of the Spin-Peierls transition in linear Cu2+ (spin - 1/2) chains in an inorganic compound CuGeO3, Phys. Rev. Lett., 70, 3651–3655.ADSCrossRefGoogle Scholar
  3. 3.
    Pytte, E. (1974) Peierls instability in Heisenberg chains, Phys. Rev., B10, 4637–4642.ADSGoogle Scholar
  4. 4.
    Jacobs, I.S., Bray, J.W., Hart, H.R., Interrante, L.V., Kasper, J.S., Watkins, G.D., Prober, D.E., and Bonner, J.C. (1976) Spin-Peierls transitions in magnetic donor-acceptor compound ofetrathiafulvalene (TTF) with bisdithiolene metal complexes, Phys. Rev., B14, 3036–3051.ADSGoogle Scholar
  5. 5.
    Buzdin, A.I., Bulaevskii, L.N. (1980) Spin-Peierls transition in the quasi one-dimentional crystals, Uspekhi Fiz. Nauk, 131, 495–510 (in Russian).CrossRefGoogle Scholar
  6. 6.
    Bulaevskii, L.N. (1963) On the theory of the nonuniform antiferromagnetic chain of spin, Soy. Phys.: JETP, 44, 1008–1012.Google Scholar
  7. 7.
    Cloizeaux, J., Pearson,J.J. (1962) Spin-wave spectrum of the antiferromagnetic linear chain, Phys. Rev., 128,2131–2139.ADSCrossRefGoogle Scholar
  8. 8.
    Anderson, P.W. (1973) Resonanting valence bonds: a new kind of insulator, ?Mater. Res. Bull., 8, 153–156.CrossRefGoogle Scholar
  9. 9.
    Majumdar, C.K., Ghosh, D.K. (1969) On next-nearest-neighbour interaction in linear chain, JMath.Phys., 10, 1388–1395.MathSciNetADSGoogle Scholar
  10. 10.
    Petrakovskii, G.A., Pankrats, A.I., Sablina, K.A., Vorotinov, A.M., Velikanov, D.A., Szymszak, H. and Kolesnik, S. (1996) The influence of the termal treatment on the magnetic and resonance properties of CuGeO,, Fizika Tverdogo Tela, 38, 1857–1867 (in Russian).Google Scholar
  11. 11.
    Petrakovskii, G.A., Vorotinov, A.M., Sablina, K.A., Pankrats, A.I., and Velikanov, D.A. (1996) The influence of the diamagnetic dilution by the Li’ and Ga“ on the magnetic and resonance properties of CuGeO3, Fizika Tverdogo Tela, 38, 3430–3438 (in Russian).Google Scholar
  12. 12.
    Bulaevskii, L.N. (1960) Magnetic susceptibility of antiferromagnetic chain of spins, Fizika Tverdogo Tela, 11, 1132–1140 (in Russian).Google Scholar
  13. 13.
    Bonner, J. C. and Fisher, M. E. (1964)Linear magnetic chain with anisotropic chain, Phys.Rev., 135, 640–649.ADSCrossRefGoogle Scholar
  14. 14.
    Riera, J. and Dobry, A. (1995) Magnetic susceptibility in the spin-Peierls system CuGeO3Phys., Rev.B51 16098–16102.ADSGoogle Scholar
  15. 15.
    Lui, X., Wosnitza, J., Lohneysen, H.V., and Kremer, R.K. (1995) Specific heat of the spin-Peierls compound CuGeO3, Z. Phys., B98, 163–165.ADSGoogle Scholar
  16. 16.
    Hase, M., Terasaki, I., Ushinokura, K., Tokunaga, M., Miura, N., Obara, H. (1993) Magnetic phase diagram of the spin-Peierls cuprate CuGeO3, Phys. Rev., B48, 9616–9619.ADSGoogle Scholar
  17. 17.
    Poirier, M., Castonguay, M., Revcolevschi, A.,and Dhallenne, G. (1995) Ultrasonic study of the magnetic phase diagram of the spin-Peierls sysrem CuGeO3, Phys. Rev., B51, 6147–6150.Google Scholar
  18. 18.
    Ohta, H., Imagawa, S., Ushiroyama, H., Motokawa, M., Fujita, O., and Akimitsu, J. (1994) Electron spin resonance of spin-Peierls material CuGeO3J, Phys. Soc. Japan, 63, 2870–2873.ADSCrossRefGoogle Scholar
  19. 19.
    Cross, M. C. (1979) Effect of magnetic field on a spin-Peiers transition, Phys. Rev., B20, 4606–4611.ADSGoogle Scholar
  20. 20.
    Kiryukhin, V. and Keimer, B. (1995) Incommensurate lattice modulation in the spin-Peierls system CuGeO3, Phys. Rev., B52, 704–709.ADSGoogle Scholar
  21. 21.
    Bonner, J.C., Northby, J.A., Jacobs, I.S., and Interrante, L.V. (1987) Hign field specific - heat susceptibility measurements: relevance to the spin-Peierls phase diagram and the validity of asoliton picture, Phys. Rev., B35, 1791–1795.ADSGoogle Scholar
  22. 22.
    Nishi, M., Fujita, O., and Akimitsu, I. (1994) Neutron scattering study on the spin-Peierls transition in a quasi-one-dimensional magnet CuGeO3, Phys. Rev., B50, 6508–6512.ADSGoogle Scholar
  23. 23.
    Regnault, L.P., Ain, M., Hennion, B., Dhalenne, G., and Revcolevschi, A. (1996) Inelastic neutron scattering of the spin-Peierls system CuGeO3, Phys. Rev., B53, 5579–5597.ADSGoogle Scholar
  24. 24.
    Nishi, M., Fujita, O., Akimitsu, J., Kakurai, K., and Fujii, Y. (1995) High-pressure effects on the spinPeierls compound CuGeO3, Phys. Rev., B52, 6959–6963.ADSGoogle Scholar
  25. 25.
    Fujita, O., Nishi, M., Akimitsu, J., Okumura, H., Kakurai, K., and Fujii, Y. (1995) Characterization of the spin-Peierls gap in CuGeO3by means of inelastic neutron scattering, Physica, B213–214, 281–283.ADSGoogle Scholar
  26. 26.
    Roessli, B., Fischer, P., Schefer, J., Buhrer, W., Furrer, A., Vogt, T., Petrakovskii, G., and Sablina, K., (1994) Elastic and inelastic neutron study of CuGeO3, J Phys.: Condens. Matter, 68469–8477.ADSCrossRefGoogle Scholar
  27. 27.
    Lorenzo, J., Hirota, K., Shirane, G., Tranguada, J., Hase, M., Uchinokura, K., Kojima, H., Tanaka, I.and Shibuya, Y. (1994) Soft longitudinal modes in spin-singlet CuGeO3, Phys. Rev., B501278–1281.ADSGoogle Scholar
  28. 28.
    Harris, Q., Feng, Q., Birgeneau, R., Hirota, K., Kakurai, K., Lorenzo, J., Shirane, G., Hase, M., and Uchinokura, K. (1994) Thermal contraction of the spin-Peierls transition in CuGeO3, Phys. Rev., B50, 12606–12610.ADSGoogle Scholar
  29. 29.
    Pouget, J., Rengault, L. P., Ain, M., Hennion, B., Renard, J. P., Viellet, P., Dhalenne, G., and Revcolevshi, A. (1994) Structural evidence for a spin -Peierls ground state in the quasi-onedimensional compound CuGeO3, Phys. Rev. Lett., 72, 4037–4040.ADSCrossRefGoogle Scholar
  30. 30.
    Kanimura, O., Terauchi, M., Tanaka, M., Fujita, O., and Akimitsu, J. (1994) Electron diffraction study of an inorganic spin-Peierls system CuGeO3, J. Phys. Soc. Japan, 63, 2467–2471.ADSCrossRefGoogle Scholar
  31. 31.
    Hirota, K., Cox, D., Lorenzo, J., Shirane, J., Tranguada, J., Hase, M., Uchinokura, K., and Kojima, H. (1994) Dimerization of CuGeO3in the spin-Peierls state, Phys. Rev. Lett., 73, 736–740.ADSCrossRefGoogle Scholar
  32. 32.
    Ohta, H., Imagawa, S., Yamamoto, Y., Motokawa, M., Fujita,0., and Akimitsu (1995) EPR study of high and low field phases of spin-Peierls system CuGeO3, JMMM, 140–144, 1685–1686.Google Scholar
  33. 33.
    Brill, T., Boucher, J., Voiron, J., Dhalenne, G., Revcolevschi, A., and Renard, J. (1994) High-field electron spin resonance and magnetization in the dimerised phase of CuGeO3, Phys. Rev. Lett., 73 1545–1548.ADSCrossRefGoogle Scholar
  34. 34.
    Petrakovskii, G., Sablina, K., Vorotinov, A., Krynetskii, I., Bogdanov, A., Szymczak, H., and Gladczuk, L. (1997) The magnetostriction of CuGeO3, Sol. St. Commun., 101, 545–547.ADSCrossRefGoogle Scholar
  35. 35.
    Geertsma, W., Khomskii, D. (1996) Influence of side group on 90°superexchange: a modification of the Goodenough-Kanamori-Anderson rules, Phys. Rev., B54, 3011–3016.ADSGoogle Scholar
  36. 36.
    Khomskii, D., Geersma, W., and Mostovoy, M. (1996) Elementary excitations, exchange interaction and spin-Peierls transition in CuGeO3, Czech. J of Phys., 46, 32–39.Google Scholar
  37. 37.
    Bayukov, O. - private communication.Google Scholar
  38. 38.
    Mattheiss, L.P. (1994) Band picture of the spin-Peierls transition in the spin -1/2 linear - chaincuprate CuGeO3, Phys. Rev., B49, 14050–14055.ADSGoogle Scholar
  39. 39.
    Aplesnin, S.S. (1996) Dimerization of the antiferromagnetic chain witn four-spin interaction., Fizika Tverdogo Tela, 38, 1868–1875 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • G. A. Petrakovskii
    • 1
  1. 1.Institute of Physics SB RASKrasnoyarskRussia

Personalised recommendations