Skip to main content

Itinerant Electrons and Superconductivity in Exotic Layered Systems

  • Chapter
  • 339 Accesses

Part of the book series: NATO Science Series ((ASHT,volume 55))

Abstract

In this paper our recent studies of organic salts are reviewed including new results. We analysed an electronic structure and superconductivity of layered organic materials on the basis of bis(ethylenedithio)tetrathiafulvalene molecule (BEDT-TTF, hereafter ET) with essential intraET correlations of electrons. Taking into account the Fermi-surface topology the normal and superconducting electronic density of states are calculated in the explicit form for a realistic model of к-ET2X salts. For an electronic pair in an empty triangular ET2 lattice the critical binding energy is evaluated. The, d-symmetry of superconducting order parameter is obtained and interplay between its nodes on the Fermi-surface and superconducting phase characteristics is found. The results are in satisfactory agreement with known band parameters of the normal phase and measured nonactivated temperature dependencies of superconducting specific heat and NMR-relaxation rate of central carbon nuclei 13C in ET. A comparison of the present results with available data is made. The developed approach is applicable to other layered organic salts parent to к-ET2X ones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akamatsu, H. and Inokuchi, H. (1950) On the electrical conductivity of violanthrone, iso-violanthrone, and pyranthrone, J. Chem. Phys., 18, 810–813.

    Article  ADS  Google Scholar 

  2. Inokuchi, H. (1954) Photoconductivity of the condensed polynuclear aromatic compounds, Bull. Chem. Soc. Jpn., 27 22–28.

    Article  Google Scholar 

  3. Akamatsu, H., Inokuchi, H., and Matsunaga, Y. (1954) Electrical conductivity of the perylene-bromine complex, Nature, 173, 168–169.

    Article  ADS  Google Scholar 

  4. Jerome, D., Mazaud, A., Ribault, M., and Bechgaard, K. (1980) A new ambient pressure organic superconductor based on BEDT-TTF with Tchigher than 10K (Tc= 10.4K), J. Phys. Lett., 41, L95–L97.

    Article  Google Scholar 

  5. Ishiguro, T. and Yamaji, K. (1990), Organic SuperconductorsSpringer-Verlag, Berlin.

    Google Scholar 

  6. Yagubskii, E.B., Shchegolev, I.F., Laukhin, V.N., and Kononovich, P.A. (1984) Normal-pressure superconductivity in an organic metal (BEDT-TTF)2I3[bis(ethylenedithiolo) tetrathiofulvalene triiodide], JETP Lett., 39, 12–16

    ADS  Google Scholar 

  7. Kaminskii, V.F., Prokhorova, T.G., Shibaeva, R.P., and Yagubskii, E.B. (1984) Crystal structure of organic superconductor (BEDT-TTF)2I3, Soy. Phys.:JETP Lett., 39, 17–23.

    ADS  Google Scholar 

  8. Kartsovnik, M.V., Laukhin, V.N., Nizhankovskii, V.I., Ignat’ev, A.A. (1988) Transverse magnetoresistance and Shubnikov-de Haas oscillations in the organic superconductor ß-(ET)2IBr2, Soy., Phys.:JETP Lett., 47363–367

    ADS  Google Scholar 

  9. Kartsovnik, M.V., Kononovich, P.A., Laukhin, V.N., and Shchegolev, I.F. (1988) Anisotropy of magnetoresistance and the Shubnikov-de Haas oscillations in the organic metal ß- (ET)2IBr2, Soy. Phys.: JETP Lett., 48, 541–545.

    ADS  Google Scholar 

  10. Murata, K., Toyota, N., Honda, Y., Sasaki, T., Tokumoto, H., Bando, H., Anzai, H., Muto, Y., and Ishiguro, T. (1988) Magnetoresistance in 3-(BEDT-TTF)213and ß-(BEDT-TTF)2IBr2: Shubnikov - de Haas effect, J. Phys. Soc. Jpn., 57, 1540–1544.

    Article  ADS  Google Scholar 

  11. Jerome, D. (1994) Organic superconductors: from (TMTSF)2PF6to fullerenes, in J.-P. Farges (ed.), Organic Conductors, Marcel Dekker Inc.,pp. 405–494.

    Google Scholar 

  12. Ishiguro, T., Ito, H., Yamauchi, Y., Ohmichi, E., Kubota, M., Yamochi, H., Saito, G., Kartsovnik, M.V., Tanatar, M.A., Sushko Yu.V., and Logvenov, G.Yu. (1997) Electronic phase diagram and Fermi surfaces of x-(ET)2X, the high Tcorganic superconductors, Synthetic Metals, 85, 1471–1478.

    Article  Google Scholar 

  13. Brooks, J.S., Uji, S., Aoki, H., Kato, R., Sawa, H., Clark, R.G., McKenzie, R., Athas, G.J., Sandhu, P., Valfells, S., Campos, C.E., Perenboom, J.A.A.J., van Bentum J., Tokumoto, M., Kinoshita, N., Kinoshita, T., Tanaka, Y., Anzai, H., Fisk, Z., and Sarrao, J. (1996) Molecular conductors: the Mesopotamia of low-dimensional physics, in Z. Fisk et al. (eds), Physical Properties at High Magnetic Fields - II., World Scientific Press, pp.249–263.

    Google Scholar 

  14. Ivanov, V. and Kanoda, K.(1996) Strong electron correlations in x-(BEDT-TTF)2X salts, Physica, C 268, 205–216.

    Article  ADS  Google Scholar 

  15. Ivanov, V. and Kanoda, K. (1996) x-(BEDT-TTF) salts as layered correlated electron systems, Molec. Cryst. Liy. Cryst., 285, 211–216.

    Article  Google Scholar 

  16. Okuno, Y. and Fukutome, H. (1997) A model for the electronic structures of ß- and k-(BEDT-TTF)2X, Solid State Commun., 101, 355–360.

    Article  ADS  Google Scholar 

  17. Fortunelli, A. and Painelli, A. (1997) Ab initio estimate of Hubbard model parameters: a simple procedure applied to BEDT-TTF salts, Phys. Rev., B55, 16088–16095.

    ADS  Google Scholar 

  18. Bulaevskii, L.N. (1988) Organic layered superconductors, Adv. in Physics, 37, 443–470.

    Article  ADS  Google Scholar 

  19. Toyota, N., Fenton, E.W., Sasaki, T., and Tachiki, M. (1989) Evidence of many-body renormalizations in some organic conductors, Solid State Commun., 72, 859–862.

    Article  ADS  Google Scholar 

  20. Kino, H. and Fukuyama, H. (1996) Phase diagram of two-dimensional organic conductors: (BEDTTTF)2X, J. Phys. Soc. Jpn., 65, 2158–2169.

    Article  ADS  Google Scholar 

  21. Ivanov, V.A. (1996) Insulator-metal phase transition in the k-ET2X salts, where “ET” is the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) molecule, Physica, C271, 127–132.

    ADS  Google Scholar 

  22. Tamura, M., Tajima, H., Yakushi, K., Kuroda, H., Kobayashi, A., Kato, R., and Kobayashi, H. (1994) Reflectance spectra of x-(BEDT-TTF)2I3, J. Phys. Soc. Jpn., 60 3861–3873.

    Article  ADS  Google Scholar 

  23. Oshima, K., Mori, T., Inokuchi, H., Urayama, H., Yamochi, H., and Saito, G.(1988) Shubnikov-de Haas effect and the Fermi surface in an ambient pressure organic superconductor [bis(ethylenedithiolo)tetrathiafulvalene]2Cu(NCS)2, Phys. Rev., B38, 938–947.

    ADS  Google Scholar 

  24. Ivanov, V., Yakushi, K., and Ugolkova, E. (1997) Electronic structure of k-ET2X salts where “ET’ is the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) molecule, Physica, C275, 26–36.

    ADS  Google Scholar 

  25. Caulfield, J., Lubczynski, W., Pratt, F.L., Singletone, J., Ko, D.Y.K., Hayes, W., Kurmoo, M., and Day, P. (1994) Magnetotransport studies of the organic superconductor x-(BEDT-ITF)2Cu2(NCS)2under pressure: the relationship between carrier effective mass and critical temperature, J. Phys.: Condensed Matter., 6, 2911–2924.

    Article  ADS  Google Scholar 

  26. Wosnitza, J., Goll, G., Beckmann, D., Wanka, S., Schweitzer, D., and Strunz, W. (1996) The Fermi surfaces of β-(BEDT-TTF)2X, J. Phys. I France, 6, 1597–1608.

    Article  Google Scholar 

  27. Xu, Y.-N., Ching, W.Y., Jean, Y.C., and Lou, Y. (1995) First-principles calculation of the electronic and optical properties of the organic superconductor k-(BEDT-TTF)2Cu(NCS)2, Phys. Rev., B5212946–12950.

    ADS  Google Scholar 

  28. Ugawa, A., Ojima, G., Yakushi, K., and Kuroda, H.(1988) Optical and electric properties of di[bis(ethylenedithio)tetrathiafulvalenium] dithiocyano cuprate (I), organic superconductor, (BEDT-TTF)2 [Cu(SCN)2], Phys. Rev., B38, 5122–5125.

    ADS  Google Scholar 

  29. Kino, H. and Fukuyama, H. (1995) Electronic states of conducting organic k-(BEDT-TTF)2X, J. Phys. Soc. Jpn., 64, 2726–2729.

    Article  ADS  Google Scholar 

  30. Jung, D., Evain, M., Novoa, J.J., Whangbo, M.H., Beno, M.A., Kini, A.M., Schultz, A.J., Williams, J.M., and Nigrey, P.J. (1989) Similarity and differences in the structural and electronic properties of k-phases organic conducting and superconducting salts, Inorg. Chem., 28, 4516–4524.

    Article  Google Scholar 

  31. Williams, J.M., Kini, A.M., Wang, H.H., Carlson, K.D., Geiser, U., Montgomery, L.K., Pyrka, G.J., Watkins, D.M., Kommers, J.M., Boryschuk, S.J., Crouch, A.V.S., and Kwok, W.K. (1990) From semiconductor-semiconductor transition (42 K) to the highest-Tcorganic superconductors k(ET)2Cu[N(CN)2]CI (Tc=12.5 K), Inorg. Chem., 29, 3272–3274.

    Article  Google Scholar 

  32. Sato, H., Sasaki, T., and Toyota, N. (1991) Electrical resistance and superconducting transitions in nondeuterated and deuterated k-(BEDT-TTF)2Cu[N(CN)2]Br, Physica, C185–189, 2679–2680.

    ADS  Google Scholar 

  33. Saito, G., Otsuka, A., and Zahidov, A.A. (1996) Overview of 10K class organic superconductors x(BDT-TTF)2X (X=Cu(NCS)2Cu(CN)[N(CN)2], Cu[N(CN)2]X (X=C1, Br)) and a search for superconductivity in alkali doped C60 complexes, Molec. Cryst. Liq. Cryst., 3284–292.

    Google Scholar 

  34. Ivanov, V.A. (1993) The tight-binding method for correlated electrons with particular attention to high-superconductors, in A. Narlikar (ed), Studies on High-T c, Superconductorsvol. 11,: Nova Science, New York, pp. 331–351.

    Google Scholar 

  35. Ivanov, V.A. (1994) The tight-binding approach to the corrundum structured compounds, J. Phys.: Condensed Matter, 6, 2065–2076.

    Article  ADS  Google Scholar 

  36. Hubbard, J. (1965) Electron correlations in narrow energy bands: IV The atomic representation, Proc. Roy. Soc., A285, 512–560.

    MathSciNet  ADS  Google Scholar 

  37. Okubo, S. (1962) Note on. unitary symmetry in strong interactions, Prog. Theor. Phys., 27, 949–966.

    Article  ADS  MATH  Google Scholar 

  38. Nakajima, S., Sato, M., and Murayama, Y., (1991) Mean field theory of the holon-spinon system, J. Phys. Soc. Jpn., 60, 2333–2340.

    Article  ADS  Google Scholar 

  39. Murayama, Y. and Nakajima, S. (1991) The mechanism of hole-doped high-Tcsuperconductivity, J. Phys. Soc. Jpn., 60,4265–4279.

    Article  ADS  Google Scholar 

  40. Murayama, Y., Ivanov, V.A., and Nakajima, S. (1996), Superconducting ruthenate viewed from the kinematic interaction mechanism, Phys. Lett., A211, 181–183.

    ADS  Google Scholar 

  41. Zaitsev, R.O. and Ivanov, V.A. (1985) Mott transition in a system of d-electrons with a half-filled band, Sov. Phys.: Solid State, 27, 2147–2152.

    Google Scholar 

  42. Ivanov, V. and Murayama, Y. (1997) Electronic structure, insulator-metal transition and superconductivity in x-(BEDT-TTF)2CuX salts, in S. Nakajima, M. Murakami (eds.), Advances in SuperconductivityIX, Springer-Verlag: Tokyo, pp. 315–320.

    Google Scholar 

  43. Ito, H., Ishiguro, T., Kubota, M., and Saito, G. (1996) Metal-nonmetal transition and superconductivity localization in two-dimensional conductor x-(BDT-TTF)2Cu[N(CN)2]C1 under pressure, J. Phys. Soc. Jpn., 65, 2987–2993.

    Article  ADS  Google Scholar 

  44. Eliashberg, G.M. and von der Linden, W. (1994) The Mott transition and superconductivity, Soy. Phys.:, JETP Lett., 59441–445.

    ADS  Google Scholar 

  45. Geilikman, B.T. and Kresin, V.Z. (1961) Effect of anisotropy on the properties of superconductors, Soy. Phys.: JETP, 13, 677–678.

    Google Scholar 

  46. Geilikman, B.T. and Kresin, V.Z. (1964) Effect of anisotropy on the properties of superconductors, Soy. Phys.: Solid State, 5, 2605–2611.

    Google Scholar 

  47. Pokrovskii, V.L. (1961) Thermodynamics of anisotropic superconductors, Soy. Phys.: JETP, 13, 447–450.

    Google Scholar 

  48. Anderson, P.W. (1959a) Theory of dirty superconductors, J. Phys. Chem. Solids, 11, 26–30; (1959b) Knight shift in superconductors, Phys. Rev. Lett., 3, 325–326.

    Google Scholar 

  49. Gor’kov, L.P. (1958) On the energy spectrum of superconductors, Soy. Phys. JETP, 7, 505–509.

    MATH  Google Scholar 

  50. Nambu, Y. (1958) Quasi-particles and gauge invariance in the theory of superconductivity, Phys. Rev., 117, 648–663.

    Article  MathSciNet  ADS  Google Scholar 

  51. Ivanov, V., Ugolkova, E., and Zhuravlev, M. (1998) Band structure and superconductivity in k-(BEDTTTF)2X salts, Soy. Phys.: JETPin press.

    Google Scholar 

  52. Suhl, H., Mattias, B., and Wolker, L.(1958) Bardeen-Cooper-Schrieffer theory of superconductivity in the case of overlapping bands, Phys. Rev. Lett., 3, 552–556.

    Article  ADS  Google Scholar 

  53. Moskalenko, V.A. (1959) Superconductivity of metals with taking into account of an energy bands overlapping, Fiz Met. Metalloved. (in Russian), 8, 503–513.

    Google Scholar 

  54. Miyake, K., Matsuura, T., Jichu, H., and Nagaoka, Y. (1984) A model for Cooper pairing in heavy fermion superconductor, Prog. Theor. Phys., 72, 1063–1080.

    Article  ADS  Google Scholar 

  55. Fehrenbacher, R. and Norman, M.R. (1995) Phenomenological BCS theory of the high-Tccuprates, Phys. Rev. Lett., 74, 3884–3887.

    Article  ADS  Google Scholar 

  56. Ivanov, V. (1997) k-(BEDT-TTF)2X organics (BEDT-TTF= bis(ethylenedithio)tetrathiafulvalene), as seen for hubbardists, Phil. Mag., B76, 697–713.

    Article  Google Scholar 

  57. Szabo, Zs. and Gulacsi, Zs. (1997) Superconducting phase diagram in the extended Hubbard model, to be published.

    Google Scholar 

  58. Valls, O.T. and Beal-Monod, M. T. (1995) Effect of interaction anisotropy on the superconducting transition temperature, Phys. Rev., B51, 8438–8445.

    ADS  Google Scholar 

  59. Maki, K. and Beal-Monod, M.T. (1995) Anisotropic d+s wave superconductivity, Phys. Lett., A208, 365–368.

    ADS  Google Scholar 

  60. Kim, H. and Nicol, E.J. (1995) Effect of impurity scattering on a (d+s)-wave superconductor, Phys. Rev., B52, 13576–13584.

    ADS  Google Scholar 

  61. Miyake, K. (1983) Fermi liquid theory of dilute submonolayer 3He on thin 4He II film,, Prog. Theor. Phys., 69, 1794–1797.

    Article  ADS  Google Scholar 

  62. Randeria, M., Duan, J..M., and Shieh, L.Y. (1989) Bound states, Cooper pairing and Bose condensation in two dimensions, Phys. Rev. Lett., 62, 981–984.

    Article  ADS  Google Scholar 

  63. Ivanov, V.A., Komilovich, P.E., and Bobryshev, V.V. (1994) Possible enhancement of the phonon pairing mechanism by a staggered magnetic field, Physica, C235–240, 2369–2370.

    ADS  Google Scholar 

  64. Kagan, M.Yu. and Rice, T.M. (1994) Superconductivity in the two-dimensional t-J model at low electron density, J. Phys.: Condensed Matter, 6, 3771–3780.

    Article  ADS  Google Scholar 

  65. Micnas, R., Ranninger, J., and Robaszkiewicz, S. (1988) An extended Hubbard model with inter-site attraction in two-dimensions and high-temperature superconductivity, J. Phys. , C21, L145–L151.

    ADS  Google Scholar 

  66. Okhawa, F.J. and Fukuyama, H. (1984) Anisotropic superconductivity in the Kondo lattice, J. Phys. Soc. Jpn., 53, 4344–4352.

    Article  ADS  Google Scholar 

  67. Lacroix, C., Bastide, C., and da Rosa Simoes, A. (1990) s-wave superconductivity in the presence of a strong Coulomb repulsion, Physica, B163, 124–126.

    ADS  Google Scholar 

  68. Parks, R. D. (ed.), (1981)., SuperconductivityPlenum Press, NY, L.

    Google Scholar 

  69. Frick, M. and Schneider, T., (1990) On the theory of layered high-temperature superconductors: Finite temperature properties, Z, Phys., B78, 159–168.

    Google Scholar 

  70. Dressel, M., Klein, O., Gruver, G., Karlson, K.D., Wang, H.H., and Williams, J.M. (1994) Electrodynamics of the organic superconductors k-(BEDT-TTF)2Cu(NCS)2and k-(BEDTTTF)2Cu[N(CN)2]Br, Phys. Rev., B50, 13603–13615.

    ADS  Google Scholar 

  71. Lang, M., Toyota, N., Sasaki, T., and Sato, H.(1992) Magnetic penetration depth of k-(BEDT-TTF)2Cu(NCS)2: strong evidence for conventional Cooper pairing, Phys. Rev. Lett., 69, 1443–1446.

    Article  ADS  Google Scholar 

  72. Nakazawa, Y. and Kanoda, K., (1997), Physica, C 282–287, 1897–1898.

    Article  ADS  Google Scholar 

  73. Nakazawa, Y. and Kanoda, K.(1997) Low-temperature specific heat of k-(BEDT-TTF)2Cu[N(CN)2]Br, Phys. Rev., B55, 8670–8680.

    ADS  Google Scholar 

  74. De Soto, S.M., Slichter, C.P., Kini, A.M., Wang, H.H., Geiser, U., and Williams, J.M. (1995)13C NMR studies of the normal and superconducting states of the organic superconductor k-(BEDT-TTF)2Cu[N(CN)2]Br, Phys. Rev., B52, 10364–10368.

    Google Scholar 

  75. Mayaffre, H., Wzietek, P., Jerome, D., Lenoir, C., and Batail, P. (1995) Superconducting state of k(ET)2Cu[N(CN)2]Br studied by 13C NMR: evidence for vortex-core-induced nuclear relaxation and unconventional pairing,, Phys. Rev. Lett., 75, 4122–4125.

    Article  ADS  Google Scholar 

  76. Kanoda, K., Miyagawa, K., Kawamoto, A., and Nakazawa, Y. (1996) NMR relaxation rate in the superconducting state of the organic conductor, k-(BDT-TTF)2Cu[N(CN)2]Br, Phys. Rev., B54, 76–79.

    ADS  Google Scholar 

  77. Yago, R. and Iye, Y. (1994) On the peak inversion of the angular dependent magnetoresistance oscillation of cylindrical Fermi surfaces with different corrugation symmetries, Solid State Commun., 89, 275–281.

    Article  ADS  Google Scholar 

  78. Sasaki, T., Sato, H., and Toyota, N.(1991) On the magnetic breakdown oscillations in organic superconductors Realization of superconductivity at ambient pressure by band-filling control in k(BEDT-TTF)2Cu(NCS)2, Physica, C185–189, 2687–2688.

    ADS  Google Scholar 

  79. Heidman, C.-P., Muller, H., Biberacher, K., Neumaier, K., Probst, Ch., Andres, K., Jansen, A., G., M., and Joss, W. (1991) Shubnikov - de Haas effect and the Fermi surface of k-(BEDT-TTF)2Cu(NCS)2, Synth. Met., 41–43, 2029–2032.

    Article  Google Scholar 

  80. Wosnitza, J., Crabtree, G. W., Wang, H. H., Geiser, U., Williams, J. M., and Carlson, K. D. (1992) de Haas - van Alphen studies of the organic superconductors α-(ET)2 (NH4)Hg(SCN)4 and k-(ET)2Cu(NCS)2[with ET= bis(ethylenedithio)-tetrathiafulvalene], Phys. Rev., B45, 3018–3025.

    ADS  Google Scholar 

  81. Caulfield, J., Singleton, J., Pratt, F.L., Doporto, M., Lubczynski, W., Hayes, W., Kurmoo, M., Day, P., Hendriks, P.T.J., and Perenboom J.A.A.J. (1993) The effects of open section of the Fermi surface on the physical properties of 2D organic molecular metals, Synth. Met., 61, 63–67.

    Article  Google Scholar 

  82. Volovik, G.E. and Gor’kov, L.P. (1985) Unusual superconductivity in UBe13, Soy. Phys.:JETP Lett., 61843–847.

    Google Scholar 

  83. Hasegawa, Y. (1996) Density of states and NMR relaxation rate in anisotropic superconductivity with intersecting line nodes, J. Phys. Soc. Jpn., 65, 3131–3133.

    Article  ADS  Google Scholar 

  84. Geilikman, B.T. (1966) On the electron mechanism of superconductivity, Soy. Phys.: Uspekhi, 9, 142–160.

    Article  ADS  Google Scholar 

  85. Bogolubov, N.N., Tolmachev, V.V., and Shirkov, D.V. (1958) A new method in the theory of superconductivity, Fortschritte der Physik, 6, 605–682.

    Article  ADS  Google Scholar 

  86. Nakajima, S. (1964) Superconductivity of the Falicov-Cohen model, Progress Theor. Physics, 32, 871–884.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  87. Ichinomiya, T. and Yamada, K. (1996) Damping effect on spin-lattice relaxation rate in organic superconductors, J. Phys. Soc. Jpn., 65, 1764–1768.

    Article  ADS  Google Scholar 

  88. Andraka, B., Stewart, G.R., Carlson, K.D., Wang, H.H., Vashon, M.D., and Williams, J.M. (1990) Specific heat in zero and applied magnetic fields of the organic superconductor αdi[bis(ethylenedithio)tetrathiafulvalene]-ammonium-tetra(thiocyanato)mercurate [α- (ET)2(NH4)Hg(SCN)4], Phys. Rev., B42, 9963–9966.

    ADS  Google Scholar 

  89. Nakazawa, Y., Kawamoto, A., and Kanoda, K., (1995) Characterization of low-temperature electronic states of the organic conductors α-(BEDT-TTF)2MHg(SCN)4(M=K, Rb and NH4), Phys. Rev., B52, 12890–12894.

    ADS  Google Scholar 

  90. Kopaev, Yu.V. and Tagirov, L.R. (1989) Peculiarities of nuclear relaxation in superconductor with strong interelectron correlations, Soy. Phys.: JETP Lett., 49, 499–453.

    ADS  Google Scholar 

  91. Moler, K.A., Baar, D.J., Urbach, J.C., Liang, R.X., Hardy, W.N., and Kapitulnik, A. (1994) Neutron diffraction Studies of Flowing and Pinned Magnetic Flux Lattices in 2H-NbSe2, Phys. Rev. Lett., 73, 2744–2747.

    Article  ADS  Google Scholar 

  92. Imai, T., Shimizu, T., Yasuoka, H., Ueda, Y., and Kosuge, K. (1988) Anomalous temperature dependence of Cu nuclear spin-lattice relaxation YBa2Cu3O6.91, J. Phys. Soc. Jpn., 57, 2280–2283.

    Article  ADS  Google Scholar 

  93. Kitaoka, Y., Hiramatsu, S., Konori, Y., Ishida, K., Kondo, T., Shiba, H., Asayama, K., Takagi, H., Uchida, S., Iwabuchi, H., and Tanaka, S. (1988) Nuclear relaxation and Knight shift studies of 63Cu in 90K- and 60K- class YBa2Cu3O7-y., Physica C153–155, 83–86.

    Google Scholar 

  94. Bulut, N. and Scalapino, J. D. (1991) Calculation of the transverse nuclear relaxation rate for YBa2Cu3O7in the superconducting state, Phys. Rev. Leu., 67, 2898–2901.

    Article  ADS  Google Scholar 

  95. Thelen, D., Pines, D., and Lu, J.P. (1993) Evidence for \({{d}_{{{{x}^{2}} - {{y}^{2}}}}}\) pairing from nuclear-magnetic experiments in the superconducting state of YBa2Cu3O2,, Phys. Rev., B47, 9151–9154.

    ADS  Google Scholar 

  96. Schrieffer, J.R. (1994) Symmetry of the order parameter in high-temperature superconductors, Solid State Commun., 92, 129–139.

    Article  ADS  Google Scholar 

  97. Komatsu, T.M., Matsukawa, N., Inoue, T., and Saito, G., (1996) Realization of superconductivity at ambient pressure by band-filling control in k-(BDT-TTF)2Cu2(CN)3, J. Phys. Soc. Jpn., 65, 1340–1354.

    Article  ADS  Google Scholar 

  98. Pratt, F.L., Singleton, J., Kurmoto, M., Spermon, S.J.R.M., Hayes, W., and Day, P. (1990) Fermi surface and band structure of k-(BEDT-TTF)2Cu(NCS)2, in: G. Saito, S. Kagoshima (eds.), The Physics and Chemistry of Organic SuperconductorsSpringer-Verlag Berlin, Heidelberg„ pp. 200–203.

    Chapter  Google Scholar 

  99. Kartsovnik, M.V., Logvenov, G.Yu., Ito H., Ishiguro, T., and Saito, G. (1995) Shubnikov - de Haas oscillations in the organic superconductor k-(BDT-TTF)2Cu[N(CN)2]Br, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene, Phys. Rev., B52, 15715–15718.

    ADS  Google Scholar 

  100. Campos, C.E., Sandhu, P.S., Brooks, J.S., and Ziman, T. (1996) An extended Huckel-tight binding study of the effect of pressure and uniaxial stress on the electronic structure of α - (BEDT-TTF)2KHg(SCN)4 and K-(BEDT-TTF)2Cu(SCN)2, Phys. Rev., B53, 12725–12732.

    ADS  Google Scholar 

  101. Maleyev, S.V., Yashenkin, A.G., and Aristov, D.N. (1994) Nuclear relaxation rate in layered superconductors with unconventional pairing, Phys. Rev., B50, 13825–13828.

    ADS  Google Scholar 

  102. Kobayashi, H., Tomito, H., Naito, T., Kobayashi, A., Sakai, F., Watanabe, T., and Cassoux, P. (1996) New BETS conductors with magnetic anions (BETS = bis(ethylenedithio)tetraselenafulvalene), J. Am. Chem. Soc., 118, 368–377.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ivanov, V.A., Ugolkova, E.A., Zhuravlev, M.Y. (1998). Itinerant Electrons and Superconductivity in Exotic Layered Systems. In: Wagner, D., Brauneck, W., Solontsov, A. (eds) Itinerant Electron Magnetism: Fluctuation Effects. NATO Science Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5080-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5080-4_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5203-7

  • Online ISBN: 978-94-011-5080-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics