Advertisement

On the Temperature Dependence of the Electrical Resistivity of Er0.55Y0.45Co2

  • A. N. Pirogov
  • N. V. Baranov
  • A. A. Yermakov
  • C. Ritter
  • J. Schweizer
Chapter
Part of the NATO Science Series book series (ASHT, volume 55)

Abstract

At low temperatures the electrical resistivity p(T) dependencies for some R1-xYxCo2 (R = Er, Ho, Dy) in the concentration regions 0.2<x<0.7; 0.3<x<0.8 and 0.6<x<0.8, respectively, exhibit a pronounced minimum. The detailed neutron diffraction study performed on Er0.05Y0.45Co2 shows that the behavior of the critical scattering of neutrons with the temperature and in an applied magnetic field correlates with the behavior of the electrical resistivity. The presence of the minimum on the p(T) dependence results from the appearance of localized spin density fluctuations with the decreasing temperature below T = 18K. This temperature can be associated with the magnetic ordering temperature of the R-subsystem (Tc R). An abrupt decrease of the resistivity with the further decrease of the temperature accompanies the appearance of the long range magnetic order in the itinerant d-subsystem at TC Co≈11K.

Keywords

Electrical Resistivity Magnetic State Neutron Diffraction Applied Magnetic Field Bragg Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloch, D., Edwards, D.M., Shimizu, M. and Voiron, J. (1975) First order transition in ACo2 compounds, JPhys. F: Metal Phys. 5, 1217–1226.ADSCrossRefGoogle Scholar
  2. 2.
    Levitin, R.Z. and Markosyan, A. (1988) Itinerant metamagnetism, Soy. Phys. - Usp. 155, 623–657.CrossRefGoogle Scholar
  3. 3.
    Baranov, N.V., Kozlov, A.I., Pirogov, A.N. and Sinitsyn, E.V. (1989) Itinerantmetamagnetizm and the features of the magnetic structure of Er1-xYx,Co2 compounds, Sov. Phys.- JETP. 96, 674–683.Google Scholar
  4. 4.
    Steiner, W., Gratz, E., Ortbauer, H. and Camen, H.W. (1978) Magnetic properties, electrical resistivity and thermal expansion of (Ho,Y)Co2, J. Phys.F: Metal. Phys. 8, 1525–1537.ADSCrossRefGoogle Scholar
  5. 5.
    Gratz, E, Pillmayr, N., Bauer, E. and Hilscher, G. (1987) Temperature and concentration dependence of the electrical resistivity in (RE,Y)Co2 (RE- rare earth element), JMMM 70, 159–161.ADSCrossRefGoogle Scholar
  6. 6.
    Baranov, N.V., Andreev, A.V., Nakotte, H., de Boer, F.R. and Klasse, J.C.P., Irreversible suppression of spin fluctuations at the metamagnetic phase transition in Er0.55Y0.45Co2 J. Alloys and Comp. 182, 171–174.Google Scholar
  7. 7.
    Hauser, R., Bauer, E., Gratz, E., Rotter, E.M., Hilsher, G., Michor, H., and Markosyan, A.S. (1997) Evidence for separate magnetic ordering in the rare earth and the dsublattice of Er0.6Y0.4Co2, Physica B237–238, 577–578.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • A. N. Pirogov
    • 1
  • N. V. Baranov
    • 2
  • A. A. Yermakov
    • 2
  • C. Ritter
    • 3
  • J. Schweizer
    • 4
  1. 1.Institute of Metal Physics RASEkaterinburgRussia
  2. 2.Ural State UniversityEkaterinburgRussia
  3. 3.Institute Max von Laue — Paul LangevinGrenobleFrance
  4. 4.CEA/Department de Recherche Fondamentale sur la Matiere CondenseeSPSMS/MDNGrenoble Cedex 9France

Personalised recommendations