Atomic Volume Effect on Electronic Structure and Magnetic Properties of UGa3 Compound

  • G. E. Grechnev
  • A. S. Panfilov
  • I. V. Svechkarev
  • A. Delin
  • O. Eriksson
  • B. Johansson
  • J. M. Wills
Part of the NATO Science Series book series (ASHT, volume 55)


The magnetic susceptibility x of the itinerant antiferromagnetic compound UGa3 has been studied experimentally under pressure up to 2 kbar in the temperature range 64–300 K. This study reveals a pronounced pressure effect on magnetic properties of UGa3 and the measured pressure derivative of the Néel temperature is found to be dT N/dP=-1.1 K/kbar. In order to analyze the experimental magnetovolume effect, to be specific dln x/dln V, the volume dependent electronic structure of UGa3 has been calculated ab initio in the paramagnetic phase by employing a relativistic full-potential LMTO method. The effect of the external magnetic field was included self-consistently by means of the Zeeman operator, as well as orbital polarization. The calculations have brought out a predominance of itinerant uranium 5f states at the Fermi energy, as well as large and competing orbital and spin contributions to x. The calculated field-induced magnetic moment of UGa3 and its volume derivative compare favorably with our experimental results.


Magnetic Susceptibility Magnetic Phase Transition Orbital Polarization Spin Moment Orbital Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fournier, J.-M. and Troc, R. (1985) Bulk properties of the actinides, in: A.J. Freeman and G.H. Lander (eds.), Handbook on the Physics and Chemistry of the Actinides, North-Holland, Amsterdam, vol. 2, pp. 29–173.Google Scholar
  2. 2.
    Sechovsky, V. and Havela, L. (1988) Intermetallic compounds of actinides, in: E.P. Wohlfarth and K.H.J. Buschow (eds.), Ferromagnetic materials, vol. 4, North-Holland, Amsterdam, pp. 309–492.Google Scholar
  3. 3.
    Koelling, D.D., Dunlap, B.D. and Crabtree, G.W. (1985) f-electron hybridization and heavy-fermion compounds, Phys. Rev. B, 31pp. 4966–4971.ADSCrossRefGoogle Scholar
  4. 4.
    Norman, M.R. and Koelling, D.D. (1993) Electronic structure, Fermi surfaces, and superconductivity in f electron metals. in: K.A. Gschneidner, Jr., L. Eyring, G.H. Lander, C.R. Choppin (eds.), Handbook on the Physics and Chemistry of the Rare Earths, vol. 17, North-Holland, Amsterdam, pp. 1–86.Google Scholar
  5. 5.
    Buschow, K.H.J. and van Daal, H.J. (1972) Comparison of anomalies observed in U- and Ce-intermetallics, in: D.C. Graham and J.J. Rhyme (eds.) Magnetism and Magnetic Materials. Proceedings of the 17th Annual Conference on Magnetism and Magnetic Materials, AIP. Conf. Proc. No. 5, AIP, New York, pp. 1464–1477.Google Scholar
  6. 6.
    Misiuk, A., Mulak, J. and Czopnik, A. (1972) Magnetic properties of UGa3, UIn3 and UTI3. Discussion in terms of the paramagnetic susceptibility maximum model, Bull. Acad. Pol. Sci. Ser. Sci Chim., 20, pp. 891–896.Google Scholar
  7. 7.
    Kaczorowski, D., Troé, R., Badurski, D., Bohm, A., Shlyk L. and Steglich F. (1993) Magnetic-to-nonmagnetic transition in the pseudobinary system UGas,Snx, Phys. Rev. B, 48, pp. 16425–16431.ADSCrossRefGoogle Scholar
  8. 8.
    Murasik, A., Leciejewicz, J., Ligenza S. and Zygmunt, A. (1974) Antiferromagnetism in UGa3, Phys. Status Solidi A, 23, pp. K147–149.ADSCrossRefGoogle Scholar
  9. 9.
    Lawson, A.C., Williams, A., Smith, J.L, Seeger, P.A., Goldstone, J.A., O’Rourke, J.A. and Fisk, Z. (1985) Magnetic neutron diffraction study of UGa3 and UGa2, J. Magn. Magn. Mater., 50, pp.83–87.ADSCrossRefGoogle Scholar
  10. 10.
    Ott, H.R., Hulliger, F., Rudiger, H. and Fisk, Z. (1985) Superconductivity in uranium compounds with Cu3Au structure, Phys. Rev. B, 31, pp. 1329–1333.ADSCrossRefGoogle Scholar
  11. 11.
    Jee, C., Yuen, T., Lin, C.L. and Crow, J.E. (1987) Thermodynamic and transport properties of U(Ga,Al)3, Bull. Am. Phys. Soc., 32p. 720.Google Scholar
  12. 12.
    Zhou, L.W., Lee, C.S., Lin, C.L., Crow, J.E., Bloom, S. and Guertin, R.P. (1987) Magnetic to nonmagnetic transition in a highly hybridized f-electron system: UGa3-xGex, J. Appl. Phys., 61, pp. 3377–3379.ADSCrossRefGoogle Scholar
  13. 13.
    van Maaren, M.H., van Daal, H.J. and Buschow, K.H.J. (1974) High electronic specific heat of some cubic UX3 intermetallic compounds, Solid State Commun., 14, pp. 145–147.CrossRefGoogle Scholar
  14. 14.
    Divis, M. (1994) Electronic structure of UGa3 calculated by tight binding and LDA methods, Phys. Status Solidi B, 182, pp. K15–18.ADSCrossRefGoogle Scholar
  15. 15.
    Grechnev, G.E., Panfilov, A.S, Svechkarev, I.V., Kaczorowski, D., Trot, R. and Czopnik, A. (1996) Effect of pressure on magnetic properties of UGa3-xSnr alloys, J. Magn. Magn. Mater., 157/158, pp. 702–703.ADSCrossRefGoogle Scholar
  16. 16.
    Panfilov, A.S. (1992) Pendulum magnetometer for measurements of magnetic susceptibility under pressure, Physics and Techniques of High Pressure (in russian), 2, pp. 61–66.Google Scholar
  17. 17.
    Kaczorowski, D., Czopnik, A., Jezowski, A., Misiorek, H., Zaleski, A.J., Klamut, P.W., Wolcyrz, M., Trot, R. and Hauzer, R. (1996) Single-crystal study of itinerant 5f-electron antiferromagnetism in UGa3, in: Journees des Actinides,Program and Abstracts, Szklarska Poreba, Poland, pp. 132–133.Google Scholar
  18. 18.
    Le Bihan, T., Heathman, S., Darracq, S., Abraham, C., Winand, J.M. and Benedict, U. (1996) High pressure X-ray diffraction studies of UX3 (X=AI,Si,Ga,Ge,In,Sn), High Temp. - High Press., 27/28, pp. 157–162.Google Scholar
  19. 19.
    McWhan, D.B. and Rice, T.M. (1967) Pressure dependence of itinerant antiferromagnetism in chromium, Phys. Rev. Lett., 19, pp. 846–849.ADSCrossRefGoogle Scholar
  20. 20.
    Skriver, H.L. (1984) The LMTO Method. Springer, Berlin.Google Scholar
  21. 21.
    Wills, J.M. and Cooper, B.R. (1987) Synthesis of band and model Hamiltonian theory for hybridizing cerium systems, Phys. Rev. B, 36, pp. 3809–3823;ADSCrossRefGoogle Scholar
  22. Price, D.L. and Cooper, B.R. (1989) Total energies and bonding for crystallographic structures in titanium-carbon and tungsten-carbon systems, Phys. Rev. B, 39, pp. 4945–4957.ADSCrossRefGoogle Scholar
  23. 22.
    von Barth, U. and Hedin, L. (1972) A local exchange-correlation potential for the spin polarized case. I, J. Phys. C, 5,pp. 1629–1642.ADSCrossRefGoogle Scholar
  24. 23.
    Eriksson, O., Johansson, B. and Brooks, M.S.S. (1990) Orbital polarization in narrow-band systems: application to volume collapses in light lanthanides, Phys. Rev. B, 41, pp. 7311–7314.ADSCrossRefGoogle Scholar
  25. 24.
    Hjelm, A., Trygg, J., Eriksson, O., Johansson, B. and Wills, J.M. (1994) Field-induced magnetism in itinerant f-electron systems: U, Pu, and Ce, Phys. Rev. B, 50, pp. 4332–4340.ADSCrossRefGoogle Scholar
  26. 25.
    Trygg, J., Wills, J.M., Johansson, B. and Eriksson, O. (1994) Field-induced magnetism in uranium compounds: UGe3 and URh3, Phys. Rev. B, 50, pp. 9226–9234.ADSCrossRefGoogle Scholar
  27. 26.
    Chadi, D.J. and Cohen, M.L. (1973) Special points in the Brillouin zone, Phys. Rev. B, 8, pp. 5747–5753;MathSciNetADSCrossRefGoogle Scholar
  28. Froyen, S. (1989) Brillouin-zone integration by Fourier quadrature: special points for superlattice and supercell calculations, Phys. Rev. B, 39, pp. 3168–3172.ADSCrossRefGoogle Scholar
  29. 27.
    Brooks, M.S.S. and Kelly, P.J. (1983) Large orbital-moment contribution to 5f band magnetism, Phys. Rev. Lett., 51, pp. 1708–1711.ADSCrossRefGoogle Scholar
  30. 28.
    Eriksson, O., Brooks, M.S.S. and Johansson, B. (1989) Relativistic Stoner theory applied to PuSn3, Phys. Rev. B, 39, pp. 13115–13119.ADSCrossRefGoogle Scholar
  31. 29.
    Brooks, M.S.S. (1993) Pressure effects upon the magnetization of actinide compounds, Physica B, 190, pp. 55–60.ADSCrossRefGoogle Scholar
  32. 30.
    Panfilov, A.S., Svechkarev, I.V., Troé, R. and Tran, V.H. (1995) Effect of pressure on magnetic susceptibility of UCus5-xAux alloys, J. Alloys and Compounds, 224, pp. 39–41.CrossRefGoogle Scholar
  33. 31.
    Panfilov, A.S., Pushkar, Yu.Ya. and Svechkarev, I.V. (1989) Effects of pressure on the exchange-enhanced band paramagnetism of palladium alloys, Soy. Phys. JETP, 68, pp. 426–431;Google Scholar
  34. Brommer, P.E., Grechnev, G.E., Franse, J.J.M., Panfilov, A.S., Pushkar, Yu.Ya. and Svechkarev, I.V. (1995) The pressure effect on the enhanced itinerant paramag-netism of Ni3Al and TiCo compounds, J. Phys.: Condens. Matter, 7, pp. 3173–3180.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • G. E. Grechnev
    • 1
  • A. S. Panfilov
    • 1
  • I. V. Svechkarev
    • 1
  • A. Delin
    • 2
  • O. Eriksson
    • 2
  • B. Johansson
    • 2
  • J. M. Wills
    • 3
  1. 1.B. Verkin Institute for Low Temperature Physics and EngineeringKharkovUkraine
  2. 2.Condensed Matter Theory Group, Department of PhysicsUniversity of UppsalaUppsalaSweden
  3. 3.Los Alamos National LaboratoryCenter for Materials Science and Theoretical DivisionLos AlamosUSA

Personalised recommendations