Skip to main content

Atomic Volume Effect on Electronic Structure and Magnetic Properties of UGa3 Compound

  • Chapter
Itinerant Electron Magnetism: Fluctuation Effects

Part of the book series: NATO Science Series ((ASHT,volume 55))

  • 334 Accesses

Abstract

The magnetic susceptibility x of the itinerant antiferromagnetic compound UGa3 has been studied experimentally under pressure up to 2 kbar in the temperature range 64–300 K. This study reveals a pronounced pressure effect on magnetic properties of UGa3 and the measured pressure derivative of the Néel temperature is found to be dT N/dP=-1.1 K/kbar. In order to analyze the experimental magnetovolume effect, to be specific dln x/dln V, the volume dependent electronic structure of UGa3 has been calculated ab initio in the paramagnetic phase by employing a relativistic full-potential LMTO method. The effect of the external magnetic field was included self-consistently by means of the Zeeman operator, as well as orbital polarization. The calculations have brought out a predominance of itinerant uranium 5f states at the Fermi energy, as well as large and competing orbital and spin contributions to x. The calculated field-induced magnetic moment of UGa3 and its volume derivative compare favorably with our experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fournier, J.-M. and Troc, R. (1985) Bulk properties of the actinides, in: A.J. Freeman and G.H. Lander (eds.), Handbook on the Physics and Chemistry of the Actinides, North-Holland, Amsterdam, vol. 2, pp. 29–173.

    Google Scholar 

  2. Sechovsky, V. and Havela, L. (1988) Intermetallic compounds of actinides, in: E.P. Wohlfarth and K.H.J. Buschow (eds.), Ferromagnetic materials, vol. 4, North-Holland, Amsterdam, pp. 309–492.

    Google Scholar 

  3. Koelling, D.D., Dunlap, B.D. and Crabtree, G.W. (1985) f-electron hybridization and heavy-fermion compounds, Phys. Rev. B, 31pp. 4966–4971.

    Article  ADS  Google Scholar 

  4. Norman, M.R. and Koelling, D.D. (1993) Electronic structure, Fermi surfaces, and superconductivity in f electron metals. in: K.A. Gschneidner, Jr., L. Eyring, G.H. Lander, C.R. Choppin (eds.), Handbook on the Physics and Chemistry of the Rare Earths, vol. 17, North-Holland, Amsterdam, pp. 1–86.

    Google Scholar 

  5. Buschow, K.H.J. and van Daal, H.J. (1972) Comparison of anomalies observed in U- and Ce-intermetallics, in: D.C. Graham and J.J. Rhyme (eds.) Magnetism and Magnetic Materials. Proceedings of the 17th Annual Conference on Magnetism and Magnetic Materials, AIP. Conf. Proc. No. 5, AIP, New York, pp. 1464–1477.

    Google Scholar 

  6. Misiuk, A., Mulak, J. and Czopnik, A. (1972) Magnetic properties of UGa3, UIn3 and UTI3. Discussion in terms of the paramagnetic susceptibility maximum model, Bull. Acad. Pol. Sci. Ser. Sci Chim., 20, pp. 891–896.

    Google Scholar 

  7. Kaczorowski, D., Troé, R., Badurski, D., Bohm, A., Shlyk L. and Steglich F. (1993) Magnetic-to-nonmagnetic transition in the pseudobinary system UGas,Snx, Phys. Rev. B, 48, pp. 16425–16431.

    Article  ADS  Google Scholar 

  8. Murasik, A., Leciejewicz, J., Ligenza S. and Zygmunt, A. (1974) Antiferromagnetism in UGa3, Phys. Status Solidi A, 23, pp. K147–149.

    Article  ADS  Google Scholar 

  9. Lawson, A.C., Williams, A., Smith, J.L, Seeger, P.A., Goldstone, J.A., O’Rourke, J.A. and Fisk, Z. (1985) Magnetic neutron diffraction study of UGa3 and UGa2, J. Magn. Magn. Mater., 50, pp.83–87.

    Article  ADS  Google Scholar 

  10. Ott, H.R., Hulliger, F., Rudiger, H. and Fisk, Z. (1985) Superconductivity in uranium compounds with Cu3Au structure, Phys. Rev. B, 31, pp. 1329–1333.

    Article  ADS  Google Scholar 

  11. Jee, C., Yuen, T., Lin, C.L. and Crow, J.E. (1987) Thermodynamic and transport properties of U(Ga,Al)3, Bull. Am. Phys. Soc., 32p. 720.

    Google Scholar 

  12. Zhou, L.W., Lee, C.S., Lin, C.L., Crow, J.E., Bloom, S. and Guertin, R.P. (1987) Magnetic to nonmagnetic transition in a highly hybridized f-electron system: UGa3-xGex, J. Appl. Phys., 61, pp. 3377–3379.

    Article  ADS  Google Scholar 

  13. van Maaren, M.H., van Daal, H.J. and Buschow, K.H.J. (1974) High electronic specific heat of some cubic UX3 intermetallic compounds, Solid State Commun., 14, pp. 145–147.

    Article  Google Scholar 

  14. Divis, M. (1994) Electronic structure of UGa3 calculated by tight binding and LDA methods, Phys. Status Solidi B, 182, pp. K15–18.

    Article  ADS  Google Scholar 

  15. Grechnev, G.E., Panfilov, A.S, Svechkarev, I.V., Kaczorowski, D., Trot, R. and Czopnik, A. (1996) Effect of pressure on magnetic properties of UGa3-xSnr alloys, J. Magn. Magn. Mater., 157/158, pp. 702–703.

    Article  ADS  Google Scholar 

  16. Panfilov, A.S. (1992) Pendulum magnetometer for measurements of magnetic susceptibility under pressure, Physics and Techniques of High Pressure (in russian), 2, pp. 61–66.

    Google Scholar 

  17. Kaczorowski, D., Czopnik, A., Jezowski, A., Misiorek, H., Zaleski, A.J., Klamut, P.W., Wolcyrz, M., Trot, R. and Hauzer, R. (1996) Single-crystal study of itinerant 5f-electron antiferromagnetism in UGa3, in: 26Eem.es Journees des Actinides,Program and Abstracts, Szklarska Poreba, Poland, pp. 132–133.

    Google Scholar 

  18. Le Bihan, T., Heathman, S., Darracq, S., Abraham, C., Winand, J.M. and Benedict, U. (1996) High pressure X-ray diffraction studies of UX3 (X=AI,Si,Ga,Ge,In,Sn), High Temp. - High Press., 27/28, pp. 157–162.

    Google Scholar 

  19. McWhan, D.B. and Rice, T.M. (1967) Pressure dependence of itinerant antiferromagnetism in chromium, Phys. Rev. Lett., 19, pp. 846–849.

    Article  ADS  Google Scholar 

  20. Skriver, H.L. (1984) The LMTO Method. Springer, Berlin.

    Google Scholar 

  21. Wills, J.M. and Cooper, B.R. (1987) Synthesis of band and model Hamiltonian theory for hybridizing cerium systems, Phys. Rev. B, 36, pp. 3809–3823;

    Article  ADS  Google Scholar 

  22. Price, D.L. and Cooper, B.R. (1989) Total energies and bonding for crystallographic structures in titanium-carbon and tungsten-carbon systems, Phys. Rev. B, 39, pp. 4945–4957.

    Article  ADS  Google Scholar 

  23. von Barth, U. and Hedin, L. (1972) A local exchange-correlation potential for the spin polarized case. I, J. Phys. C, 5,pp. 1629–1642.

    Article  ADS  Google Scholar 

  24. Eriksson, O., Johansson, B. and Brooks, M.S.S. (1990) Orbital polarization in narrow-band systems: application to volume collapses in light lanthanides, Phys. Rev. B, 41, pp. 7311–7314.

    Article  ADS  Google Scholar 

  25. Hjelm, A., Trygg, J., Eriksson, O., Johansson, B. and Wills, J.M. (1994) Field-induced magnetism in itinerant f-electron systems: U, Pu, and Ce, Phys. Rev. B, 50, pp. 4332–4340.

    Article  ADS  Google Scholar 

  26. Trygg, J., Wills, J.M., Johansson, B. and Eriksson, O. (1994) Field-induced magnetism in uranium compounds: UGe3 and URh3, Phys. Rev. B, 50, pp. 9226–9234.

    Article  ADS  Google Scholar 

  27. Chadi, D.J. and Cohen, M.L. (1973) Special points in the Brillouin zone, Phys. Rev. B, 8, pp. 5747–5753;

    Article  MathSciNet  ADS  Google Scholar 

  28. Froyen, S. (1989) Brillouin-zone integration by Fourier quadrature: special points for superlattice and supercell calculations, Phys. Rev. B, 39, pp. 3168–3172.

    Article  ADS  Google Scholar 

  29. Brooks, M.S.S. and Kelly, P.J. (1983) Large orbital-moment contribution to 5f band magnetism, Phys. Rev. Lett., 51, pp. 1708–1711.

    Article  ADS  Google Scholar 

  30. Eriksson, O., Brooks, M.S.S. and Johansson, B. (1989) Relativistic Stoner theory applied to PuSn3, Phys. Rev. B, 39, pp. 13115–13119.

    Article  ADS  Google Scholar 

  31. Brooks, M.S.S. (1993) Pressure effects upon the magnetization of actinide compounds, Physica B, 190, pp. 55–60.

    Article  ADS  Google Scholar 

  32. Panfilov, A.S., Svechkarev, I.V., Troé, R. and Tran, V.H. (1995) Effect of pressure on magnetic susceptibility of UCus5-xAux alloys, J. Alloys and Compounds, 224, pp. 39–41.

    Article  Google Scholar 

  33. Panfilov, A.S., Pushkar, Yu.Ya. and Svechkarev, I.V. (1989) Effects of pressure on the exchange-enhanced band paramagnetism of palladium alloys, Soy. Phys. JETP, 68, pp. 426–431;

    Google Scholar 

  34. Brommer, P.E., Grechnev, G.E., Franse, J.J.M., Panfilov, A.S., Pushkar, Yu.Ya. and Svechkarev, I.V. (1995) The pressure effect on the enhanced itinerant paramag-netism of Ni3Al and TiCo compounds, J. Phys.: Condens. Matter, 7, pp. 3173–3180.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grechnev, G.E. et al. (1998). Atomic Volume Effect on Electronic Structure and Magnetic Properties of UGa3 Compound . In: Wagner, D., Brauneck, W., Solontsov, A. (eds) Itinerant Electron Magnetism: Fluctuation Effects. NATO Science Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5080-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5080-4_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5203-7

  • Online ISBN: 978-94-011-5080-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics