Advertisement

Spin Fluctuation Theory Versus Exact Calculations

  • V. Barar
  • W. Brauneck
  • D. Wagner
Chapter
Part of the NATO Science Series book series (ASHT, volume 55)

Abstract

The infinite dimensional simplified Hubbard or Falicov-Kimball model is used for a check of a generalized spin fluctuation theory which had been successfully applied to Invar systems. In particular we calculate the order parameter and the volume for this model from the exact free energy and from an application of the spin fluctuation theory which we adjust to this model. We find rather large discrepancies in the temperature behaviour.

Keywords

Band Structure Calculation Infinite Dimension Invar Effect Nonzero Temperature Fluctuation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moriya, T. (1985) Spin Fluctuations in Itinerant Electron Magnetism, Springer-Verlag, Berlin.Google Scholar
  2. 2.
    Murata, K. K. and Doniach, S. (1972) Theory of magnetic fluctuations in itinerant ferromagnets, Phys. Rev. Lett. 29 285–288.ADSCrossRefGoogle Scholar
  3. 3.
    Wagner, D. (1989) Fixed-spin-moment method and fluctuations, J. Phys.: Condens. Matter 1 4635–4642.ADSCrossRefGoogle Scholar
  4. 4.
    Schröter, M., Entel, P. and Mishra, S. G. (1990) Metallic magnetism and magnetic volume collapse, J. Magn.Magn. Mater. 87 163–176.ADSCrossRefGoogle Scholar
  5. 5.
    Wassermann, E. F. (1990) Invar: Moment-volume instabilities in transition metals and alloys in: K. H. J. Bushow and E. P. Wohlfahrt (eds.), Ferromagnetic Materials, Elsevier, Amsterdam, Vol. 5, p.237–322.Google Scholar
  6. 6.
    Williams, A. R., Moruzzi, V. L., Gelatt, C. D. Jr., Kübler, J. and Schwarz, K. (1982), Aspects of transition-metal magnetism, J. Appl. Phys. 53 2019–2023.ADSCrossRefGoogle Scholar
  7. 7.
    Moruzzi, V. L. (1990) High-spin and low-spin states in Invar and related alloys, Phys. Rev. B 41 6939–6946.ADSCrossRefGoogle Scholar
  8. 8.
    Moruzzi, V. L., Marcus, P. M., Kübler, J. (1989) Magnetovolume instabilities and ferromagnetism versus antiferromagnetism in bulk fcc iron and manganese, Phys. Rev. B 39 6957–6961.ADSCrossRefGoogle Scholar
  9. 9.
    Podgórny, M. (1992) Magnetic instabilities in PtFe3 and in the fcc Ni-Fe system, Phys. Rev. B 46 6293–6961.ADSCrossRefGoogle Scholar
  10. 10.
    Weiss, R. J. (1963) The origin of the ‘Invar’ effect, Proc. Phys. Soc. London 82 281–288.ADSCrossRefGoogle Scholar
  11. 11.
    Mohn, P., Schwarz, K. and Wagner, D. (1991) Magnetoelastic anomalies in Fe-Ni Invar alloys, Phys. Rev. B 43 3318–3324.ADSCrossRefGoogle Scholar
  12. 12.
    Podgórny, M., Thon, M. and Wagner, D. (1992) Electronic structure and thermo­dynamic properties of Fe-Pt alloys, J. Magn. Magn Mater. 104–107 703–704.ADSCrossRefGoogle Scholar
  13. 13.
    Staunton, J. B. (1994) The electronic structure of magnetic transition metallic ma­terials, Rep. Prog. Phys. 57 1289–1344.ADSCrossRefGoogle Scholar
  14. 14.
    Entel, P., Hoffmann, E., Mohn, P., Schwarz, K. and Moruzzi, V. L.(1993) First-principles calculations of the instability leading to the Invar effect, Phys. Rev. B 47 8706–8720.ADSCrossRefGoogle Scholar
  15. 15.
    Lieb, E.H. (1986) A model for crystallization: A variation on the Hubbard model, Physica A 140 240–250.MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Metzner, W. and Vollhardt, D. (1989) Correlated lattice fermions in d = ∞ dimen­sions, Phys. Rev. Lett. 62, 324–327.ADSCrossRefGoogle Scholar
  17. 17.
    Müller-Hartmann, E. (1989) Correlated fermions on a lattice in high dimensions, Z. Phys. B 74, 507–512.ADSCrossRefGoogle Scholar
  18. 18.
    Heine, V. (1967) s-d Interactions in transition metals Phys. Rev. B 153, 673–682.ADSCrossRefGoogle Scholar
  19. 19.
    Brandt, U. and Schmidt, R. (1986) Exact results for the distribution of the f-level ground state occupation in the spinless Falicov-Kimball model, Z. Phys. B 63, 45–53.ADSCrossRefGoogle Scholar
  20. 20.
    Brandt, U. and Schmidt, R. (1987) Ground state properties of a spinless Falicov­Kimball model: Additional features, Z. Phys. B 67, 43–51.MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    Brandt, U., Mielsch, C. (1989) Thermodynamics and correlation functions of the Falicov-Kimball model in large dimensions, Z. Phys. B 75, 365–370.ADSCrossRefGoogle Scholar
  22. 22.
    Brandt, U., Mielsch, C. (1990) Thermodynamics of the Falicov-Kimball model in large dimensions II, Z. Phys. B 79, 295–299.ADSCrossRefGoogle Scholar
  23. 23.
    Brandt, U., Mielsch, C. (1991) Free energy of the Falicov-Kimball model in large dimensions, Z. Phys. B 82, 37–41.ADSCrossRefGoogle Scholar
  24. 24.
    Barar, V. (1994) Die Grundzustandsenergieflaeche des Falicov-Kimball-Modells im Grenzfall unendlich grosser Dimension (The ground-state energy surface of the Falicov-Kimball model in infinite dimensions) Diplomarbeit,Bochum. Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • V. Barar
    • 1
  • W. Brauneck
    • 1
  • D. Wagner
    • 1
  1. 1.Theoretische Physik IIIRuhr-Universität BochumBochumGermany

Personalised recommendations