Skip to main content

Molecular Dynamics Approach to Complex Magnetic Structures in Itinerant-Electron Systems

  • Chapter
Itinerant Electron Magnetism: Fluctuation Effects

Part of the book series: NATO Science Series ((ASHT,volume 55))

  • 337 Accesses

Abstract

A molecular dynamics (MD) theory of itinerant electron magnetism which has recently been proposed to describe the complex magnetic structures is reviewed. The isothermal MD approach based on the functional integral method is shown to predict automatically the complex magnetic structure with a few hundred atoms in a unit cell at finite ternperatures. It is demonstrated by the numerical calculations for bcc Fe that the MD approach describes the second order phase transition as a function of temperature because of a selfconsistent effective medium in the theory. The numerical results of the MD calculations for the fcc transition metals with use of 108 atoms and 256 atoms show the existence of various complex magnetic structures for the d electron numbers between 6.0 and 7.0, and the strong spin frustrations for γ-Fe. The theory is extended to the magnetic alloys and is found to explain the basic feature of γ-FeMn alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yamada, T. (1970) Magnetism and Cristal Symmetry of α-Mn, J. Phys. Soc. Jpn. 28 596; Yamada, T., Kunitomi, N., and Nakai, Y. (1971) Magnetic Structure of α-Mn, J. Phys. Soc. Jpn. 30 1614.

    Google Scholar 

  2. Abrahams, S.C., Gutman, L., and Kaksper, J.S. (1962) Neutron diffraction determination of antiferromagnetism in face-centered cubic (γ)Iron, Phys. Rev. 127 2052.

    Article  ADS  Google Scholar 

  3. Endoh, Y. and Ishikawa, Y. (1971) Antiferromagnetism of γ Iron Manganes Alloys, J. Phys. Soc. Jpn. 30 1614.

    Article  ADS  Google Scholar 

  4. Tsunoda, Y. (1989) Spin-density wave in cubic γ-Fe and γ-Fe100-xCox precipitates in Cu, J. Phys.: Condens. Matter 1 10427.

    Article  ADS  Google Scholar 

  5. Hiroyoshi, H. and Fukamichi, K. (1981) Spin-glass like behavior in Fe-Zr amorphous alloys, Phys. Lett. 85A 242; (1982) Ferromagnetic-spin glass transition in Fe-Zr amorphous alloy system, J. Appl. Phys. 53 2226.

    Google Scholar 

  6. Saito, N., Hiroyoshi, H., Fukamichi, K., and Nakagawa Y. (1986) Micromagnetism of Fe-rich Fe-Zr amorphous alloys studied by AC susceptibility in a superposed DC field J. Phys. F 16 911.

    Article  ADS  Google Scholar 

  7. Fukamichi, K., Goto, T., Komatsu, H. and Wakabayashi, H. (1988) Spin Glass and Invar Properties of Iron-rich Amorphous Alloys, Proc. 4th Int. Conf. on Phys. Magn. Mater. (Poland), ed. Gorkowski, W., Lachowics, H.K., and Szymczak, H., World Scientific Pub., Singapore, 1989, p. 354.

    Google Scholar 

  8. Fujii, S., Ishida, S., and Asano, S. (1991) Band Calculations for Non-Collinear Spin Arrangements in Gamma-Phase Manganese-Iron Alloys, J. Phys. Soc. Jpn. 60 4300.

    Article  ADS  Google Scholar 

  9. Lacroix, C. and Pinettes, C. (1992) Itinerant antiferromagnetism in a frustrated lattice, J. Magn. Magn. Mater. 104–107 751.

    Article  ADS  Google Scholar 

  10. Mryasov, O.N., Lichtenstein, A.I., Sandratskii, L.M., and Gubanov, V.A. (1991) Magnetic structure of FCC iron, J. Phys.: Condens. Matter 3 7683; Mryasov, O.N., Gubanov, V.A., and Lichtenstein, A.I. (1992) Spiral-spin-density-wave states in fcc iron: Linear-muffin-tin-orbitals band-structure approach, J. Appl. Phys. 45 12330.

    Google Scholar 

  11. Uhl, M., Sandratskii, L.M., and Kübler, J. (1992) Electronic and magnetic states of γ-Fe, J. Magn. Magn. Mater. 103 314.

    Article  ADS  Google Scholar 

  12. Körling, M. and Ergon, J. (1997) Gradient-Corrected Ab-initio Calculations of Spin-Spiral States in FCC-Fe, Physica B 237–238 353.

    Google Scholar 

  13. Asano, S. and Yamashita, J. (1971) Band Theory of Antiferromagnetism in 3d f.c.c. Transition Metals, J. Phys. Soc. Jpn. 31 1000.

    Article  ADS  Google Scholar 

  14. Kakehashi, Y., Akbar, S., and Kimura, N. (1998) Molecular dynamics approach to itinerant magnetism with complex magnetic structures, Phys. Rev. B 57,1; Akbar, S., Kakehashi, Y., and Kimura, N. (1998) A molecular dynamics approach to the magnetic alloys with turbulent complex magnetic structures: γ-FeMn alloys, J. Phys.: Condens. Matter 10 2081.

    Google Scholar 

  15. Hubbard, J. (1959) Calculation of Partition Functions, Phys. Rev. Lett. 3 77.

    Article  ADS  Google Scholar 

  16. Stratonovich, R.L. (1958) On a method of calculating quantum distribution functions, Dokl. Akad. Nauk SSSR 115, 1097 [Soy. Phys. - Dokl. 2 (1958) 416].

    Google Scholar 

  17. Hubbard, J. (1979) Magnetism of Iron, Phys. Rev. B 19 2626; (1979) Magnetism of Iron II, ibid 20 4584; (1981) Magnetism of Nickel, ibid 23 5974.

    Google Scholar 

  18. Hasegawa, H. (1979) Single-Site Functional-Integral Approach to Itinerant-Electron Ferromagnetisms, J. Phys. Soc. Japan. 46 1504; (1980) Single-Site Spin Fluctuation Theory of Itinerant-Electron Systems with Narrow Bands, ibid. 49 178.

    Google Scholar 

  19. Hasegawa, H. (1983) A spin fluctuation theory of degenerate narrow bands — finite-temperature magnetism of iron, J. Phys. F 13 1915.

    Article  ADS  Google Scholar 

  20. Kakehashi, Y. (1986) Degeneracy and quantum effects in the Hubbard model Phys. Rev. B 34 3243.

    Article  ADS  Google Scholar 

  21. See, for example, Fulde, P. (1995), Electron Correlations in Molecules and Solids, Solid State Sciences Vol. 100, Springer-Verlag, Berlin, Chap. 11.

    Book  Google Scholar 

  22. Soven, P. (1967) Coherent-Potential Model of Substitutional Disordered Alloys, Phys. Rev. 156 809; Velickÿ, B., Kirkpatrick, S., and Ehrenreich, H. (1968) Single-Site Approximations in the Electronic Theory of Sinple Binary Alloys, ibid. 175, 747.

    Google Scholar 

  23. Nosé, S. (1984) A molecular dynamics method for simulations in the canonical ensembre, J. Chem. Phys. 81, 511.

    Article  ADS  Google Scholar 

  24. Hoover, W.G. (1991), Computational Statistical Mechanics, Elsevier, Amsterdam.

    Google Scholar 

  25. Haydock, R., Heine, V., and Kelly, M.J. (1975) Electronic structure based on the local atomic environment for tight-binding bands, J. Phys. C 8, 591.

    Article  Google Scholar 

  26. Heine, V., Haydock, R. and Kelly, M.J. (1980) Electronic structure from the point of view of the local atomic environment, Solid State Physics 35 1.

    Article  Google Scholar 

  27. Haydock, R. and Kelly, M.J. (1973) Surface densities of states in the tight-binding approximation, Surf. Sci. 38 139.

    Article  ADS  Google Scholar 

  28. Andersen, O.K., Madsen, J., Poulsen, U.K., Jepsen, O. and Kollär, J. (1977) Magnetic and cohesive properties from canonical bandsPhysica B 86–88, 249.

    Google Scholar 

  29. Bozorth, R. (1968), Ferromagnetism, Van Nostrand, Princeton.

    Google Scholar 

  30. Moruzzi, V.L., Janak, J.F., and Williams, A.R. (1978), Calculated Electronic Properties of Metals, Pergamon, New York.

    Google Scholar 

  31. Janak, J.F. (1977) Uniform susceptibilities of metallic elements Phys. Rev. B 16 255.

    Article  ADS  Google Scholar 

  32. Megeghetti, D. and Sidhu, S.S. (1957) Magnetic Structures in Copper-Manganese Alloys, Phys. Rev. 105, 130; Bacon, G.E., Dummur, I.W., Smith, J.H., and Street, R. (1957) The antiferromagnetism of manganese copper alloys, Proc. Roy. Soc. A 241, 223; Hick, T.J„ Pepper, A.R., and Smith, J.H. (1968) Antiferromagnetism in y-phase manganese-palladium and manganese-nickel alloys, J.Phys. C 1, 1683.

    Google Scholar 

  33. Oguchi, T. and Freemann, A.J. (1984) Magnetically induced tetragonal lattice distortion in antiferromagnetic fcc Mn, J. Magn. Magn. Mater. 46 L1.

    Article  ADS  Google Scholar 

  34. Antropov, V.P., Katsnelson, M.I., van Shilfgaarede, M., and Harmon, B.N. (1995) Ab Initio Spin Dynamics in Magnets, Phys. Rev. Lett. 75, 729; Antropov, V.P., Katsnelson, M.I., Harmon, B.N., van Shilfgaarede, M., and Kusnezov, D. (1996) Spin dynamics in magnets: Equation of Motion and finite temperature effects, Phys. Rev. B 54 1019.

    Google Scholar 

  35. Kennedy, S.J., and Hicks, T.J. (1986) Magnetic structure of y-iron-manganese, J. Phys. F: Met. Phys 17, 1599.

    Article  ADS  Google Scholar 

  36. Bisanti, P., Mazzone, G., and Sacchetti, F. (1987) Electronic structure of FCC Fe-Mn alloys: II. Spin-density measurements, J. Phys. F: Met. Phys. 17, 1425.

    Article  ADS  Google Scholar 

  37. Andreani, C., Mazzone, G., and Sacchetti, F. (1987) Electronic structure of FCC Fe-Mn alloys: I. Charge-density measurements, J. Phys. F: Met. Phys 17, 1419.

    Article  ADS  Google Scholar 

  38. Kübler, J., Hock, K.H., Sticht, J. and Williams, A.R. (1988) Local spin-density functional theory of noncollinear magnetism, J. Phys. F: Met. Phys. 18, 469.

    Article  ADS  Google Scholar 

  39. Süss, F. and Krey, U. (1993) On the itinerant magnetism of Mn and its ordered alloys with Fe and Ni, J. Magn. Magn. Mater. 125, 351.

    Article  ADS  Google Scholar 

  40. Bacon, G.E., Dunmur, I.W., Smith, J.H. and Street, R. (1957) The antiferromagnetism of manganese copper alloys, Proc. Roy. Soc. A 241, 223.

    Article  ADS  Google Scholar 

  41. Antropov, V.P., Anisimov, V.I., Lichtenstein, A.I., and Postnikov, A.V. (1988) Electronic structure and magnetic properties of 3d impurities in antiferromagnetic metals Phys. Rev. B 37 5603.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kakehashi, Y., Akbar, S., Kimura, N. (1998). Molecular Dynamics Approach to Complex Magnetic Structures in Itinerant-Electron Systems. In: Wagner, D., Brauneck, W., Solontsov, A. (eds) Itinerant Electron Magnetism: Fluctuation Effects. NATO Science Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5080-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5080-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5203-7

  • Online ISBN: 978-94-011-5080-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics