Skip to main content

Microfriction and Microwear Experiments on Metal Containing Amorphous Hydrocarbon Hard Coatings Using an Atomic Force Microscope

Mechanisms, Models and Micro- versus Macrotests

  • Conference paper
Tribology Issues and Opportunities in MEMS

Abstract

Metal containing amorphous hydrocarbon films (Me-C:H) consist of nanometer sized metallic particles embedded in a highly cross-linked hydrocarbon matrix. The coatings have excellent tribological properties and an adjustable electrical conductivity, therefore being of high interest for applications in MEMS devices. In this study microtribological properties of tungsten-C:H and gold-C:H films with metal contents ranging from 0 to 50 at% have been investigated by means of atomic force microscopy (AFM) methods. Friction force microscopy experiments have been performed and the load dependence of friction was analysed by means of Hertz theory of elastic contact. This analysis results in effective friction coefficients µ*=Ffrict/(RtipFload)2/3 ~ S•E* -2/3 (E* = red. Young’s modulus) which are used to determine shear stress S as a function of metal content and type of metal in the film. Comparison with results from macroscopic pin-on-disk tests shows a strong correlation with start values of friction, before wear or material transfer begin to influence frictional behaviour.

Microwear tests have been performed, using a diamond tip on a stainless steel cantilever. Real-time observation of the wear process shows periodic material break-off after a critical number of wear cycles, indicating material fatigue as an important wear mechanism. A strong influence of the columnar growth structure and the percolation of metallic nanoparticles inside the film on fatigue and wear resistance was found. Load dependence and time dependence of wear have been studied and described by simple models considering low cycle fatigue, mechanical properties of the film and change of contact area respectively. A reasonable fit of experimental data is obtained and fit parameter are in the order of magnitude predicted by the model. Microscopic (AFM) and macroscopic (pinon-disk) wear tests partly show comparable results. Differences are attributed to different effective contact pressures due to abrasive particles in the interface during the pin-on-disk test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Grischke, Fortschrittberichte VDI, Reihe 5, No 179 (1989)

    Google Scholar 

  2. H. Köberle, Thesis at the University of Hamburg, Dept. of Phys. (1989)

    Google Scholar 

  3. M. Fryda, Fortschrittberichte VDI, Reihe 5, No 303 (1993)

    Google Scholar 

  4. K. Taube; Fortschrittberichte VDI, Reihe l8, No 102 (1991)

    Google Scholar 

  5. C.P. Klages, R. Memming; Material Science Forum Vols. 52&53 (1989) 609, Trans Tech publication, Switzerland

    Google Scholar 

  6. M. Grischke, K. Bewilogua, H. Dimigen; Mat. Manufact. Processes 8(4&5) (1993) 407

    Article  Google Scholar 

  7. H. Dimigen, C.P. Klages; Surf. Coat. Techn. 49 (1991) 543

    Google Scholar 

  8. S. Miyake; Surf. Coat. Techn. 54/55 (1992) 563

    Article  Google Scholar 

  9. H. Ronkainen, J. Koskinen, J. Likonen, S. Varjus, J. Vihersalo; Diam. Rel. Mat. 3 (1994) 1329

    Article  Google Scholar 

  10. C. Donnet, M. Belin, J.C. Auge, J.M. Martin, A. Grill, V. Patel; Surf. Coat. Techn. 68/69 (1994) 626

    Article  Google Scholar 

  11. Y. Liu, A. Erdemir, E.I. Meletis; Surf. Coat. Techn. 82 (1996) 48

    Article  Google Scholar 

  12. C.P. Klages, H. Köberle, M. Bauer, R. Memming; Proc. 1. Int. Symp. „Diamond and Diamond-Like Films“, Edt. J.P. Dismukes, Elec-Chem. Soc. Proc. vol. 89–12 (1989) 225

    Google Scholar 

  13. E. Boettger; Diploma Thesis at the University of Hamburg, Dept. Phys.-Chem. (1990)

    Google Scholar 

  14. K.I. Schiffmann, M. Fryda, G. Goerigk; Microchim. Acta 125 (1997) 107

    Article  Google Scholar 

  15. K.I. Schiffmann, M. Fryda, G. Goerigk, R. Lauer, P. Hinze; Ultramicroscopy 66 (1996) 183

    Article  Google Scholar 

  16. K. I. Schiffmann, Thesis at the University of Hamburg, Dept. of Phys. (1997)

    Google Scholar 

  17. C.M. Mate; Surf. Coat. Techn. 62 (1993) 373

    Article  Google Scholar 

  18. I. Fujiwara, T. Kamaei, K. Tanaka; J. Appl. Phys. 78 (6) (1995) 4189

    Article  ADS  Google Scholar 

  19. S. Miyake, S. Watanabe, M. Murakawa, R. Kaneko, T. Miyamoto; Thin Solid Films 212 (1992) 262

    Article  ADS  Google Scholar 

  20. S. Miyake, R. Kaneko; Thin Solid Films 212 (1992) 256

    Article  ADS  Google Scholar 

  21. B. Bhushan, V.N. Koinkar, J.A. Ruan; Proc. Instn. Mech. Engrs. 208 (1994) 17

    Google Scholar 

  22. Z. Jiang, C.J. Lu, D.B. Bogy, C.S. Bhatia, T. Miyamoto; Thin Solid Films 258 (1995) 75

    Article  ADS  Google Scholar 

  23. V.N. Koinkar, B. Bhushan; J. Appl. Phys. 79 (10) (1996) 8071

    Article  ADS  Google Scholar 

  24. R. Kaneko, T. Miyamoto, Y. Andoh, E. Hamada; Thin Solid Films 273 (1996) 105

    Article  ADS  Google Scholar 

  25. H. Dimigen, H. Hübsch; Philips Techn. Rev. 41 (1983) 186

    Google Scholar 

  26. J.T. Harnack; Thesis at the University of Hamburg, Dept. of Phys. (1993)

    Google Scholar 

  27. M. Binggeli, R. Christoph, H.E. Hintermann, O. Marti; Surf. Coat. Technol. 62 (1993) 523

    Article  Google Scholar 

  28. M. Hipp, H. Bielefeldt, J. Colchero, O. Marti, J. Mlynek; Ultramicroscopy 42–44 (1992) 1498

    Article  Google Scholar 

  29. J. Colchero; “Reibungskraftmikroskopie”, Thesis at the University of Konstanz, Germany, Dept. of Phys. (1993)

    Google Scholar 

  30. S. Grafström, M. Neitzert, T. Hagen, J. Ackermann, R. Neumann, O. Probst, M. Wörtge; Nanotechnology 4 (1993) 143

    Article  ADS  Google Scholar 

  31. S. Fujisawa, Y. Sugawara, S. Morita; Microbeam Analysis 2 (1993) 311

    Google Scholar 

  32. J.L Loubet, M. Belin, R. Durand, H. Pascal; Thin Solid Films 253 (1994) 194

    Article  ADS  Google Scholar 

  33. U.D. Schwarz, H. Bluhm, H. Hölscher, W. Allers, R. Wiesendanger; in “Physics of Sliding Friction” (Edt. B.N.J. Persson) Nato ASI Series, Kluwer, Dordrecht (1996)

    Google Scholar 

  34. A. Berman, J. Israelachvili; in “Micro/Nanotribology and its Applications” Edt.: B. Bhushan, Nato ASI Series E, Vol. 330, Kluwer Academic Publishers (1997) 317

    Book  Google Scholar 

  35. K.L. Johnson; “Contact Mechanics“, Cambridge University Press (1985)

    Google Scholar 

  36. I.L. Singer; in “Fundamentals of Friction: Macroscopic and Microscopic Processes” Edt. Singer, Pollock; Nato ASI Series E, Appl. Sci. Vol. 220 (1992) 237

    Google Scholar 

  37. T.H.C. Childs; in “Fundamentals of Friction: Macroscopic and Microscopic Processes” Edt. Singer, Pollock; Nato ASI Series E, Appl. Sci. Vol. 220 (1992) 209

    Google Scholar 

  38. B.J. Briscoe; in “Fundamentals of Friction: Macroscopic and Microscopic Processes” Edt. Singer, Pollock; Nato ASI Series E, Appl. Sci. Vol. 220 (1992) 167

    Google Scholar 

  39. J.N. Israelachvili; in “Fundamentals of Friction: Macroscopic and Microscopic Processes” Edt. Singer, Pollock; Nato ASI Series E, Appl. Sci. Vol. 220 (1992) 351

    Google Scholar 

  40. A. Berman, J.N. Israelachvili; in “Micro/Nanotribology and Its Applications” Edt. Bhushan; Nato ASI Series E, Appl. Sci. Vol. 330 (1997) 317

    Google Scholar 

  41. H.K. Christenson; J. Colloid Interface Sci. 121 (1988) 170

    Article  Google Scholar 

  42. U.D. Schwarz, P. Köster, R. Wiesendanger: “Quantitative analysis of lateral force microscopy experiments”; Rev. Sci. Instr., in press (1996/97)

    Google Scholar 

  43. U.D. Schwarz, personal communication (1997), to be published

    Google Scholar 

  44. M.A. Lantz, S.J. O’Shea, M.E. Welland, K.L. Johnson; Phys. Rev. B 55(16) (1997) 55

    Article  Google Scholar 

  45. R.W. Carpick, D.F. Ogletree, M. Salmeron; Appl. Phys. Lett (1997) in press

    Google Scholar 

  46. U.D. Schwarz, O. Zwörner, P. Köster, R. Wiesendanger; Phys. Rev. B (1997) in press

    Google Scholar 

  47. J. Burger, M. Binggeli, R. Christoph, H.E. Hintermann, O. Marti; personal communication (1994)

    Google Scholar 

  48. M. Wang; research center Jülich, report no. Jü1–2595, ISSN 0366–0885 (1991)

    Google Scholar 

  49. W. van Duyn, B. van Lochern; Thin Solid Films 181 (1989) 497

    Article  Google Scholar 

  50. K.H. Zum Gahr; “Microstructure and Wear of Materials”, Tribology Series No 10, Elsevier, New York (1987)

    Google Scholar 

  51. S.S. Manson, Discussion to: J.F. Tavernelli, Coffin, Jr; Trans. ASME, J Basic Eng. 84 (1962) 533

    Article  Google Scholar 

  52. S. Miyake, T. Miyamoto, R. Kaneko, T. Miyazaki; IEICE Trans. Electron. E78-C(2) (1995) 180

    Google Scholar 

  53. S. Miyake, R. Kaneko, T. Miyamoto; Diam. Films. Technol. 1(4) (1992) 205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Schiffmann, K.I. (1998). Microfriction and Microwear Experiments on Metal Containing Amorphous Hydrocarbon Hard Coatings Using an Atomic Force Microscope. In: Bhushan, B. (eds) Tribology Issues and Opportunities in MEMS. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5050-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5050-7_40

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6121-6

  • Online ISBN: 978-94-011-5050-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics