Skip to main content

Mechanical Property Determination Using Nanoindentation Techniques

  • Conference paper
Tribology Issues and Opportunities in MEMS
  • 647 Accesses

Abstract

Data obtained from indentation testing can provide important information about the near-surface mechanical properties and deformation behavior of solids. Properly executed and interpreted, the technique can provide information regarding hardness, elastic modulus, compressive yield strength (metals), fracture toughness (ceramics) and residual stresses. The apparent simplicity of the test procedure, however, often belies the difficulties of interpreting the data to give quantitative information on properties of interest for a specific application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Battacharya, A.K. and Nix, W.D. (1988), Int. J. Solids Structures 24 1287.

    Article  Google Scholar 

  • Bell, T.J., Bendel, A., Field, J.S., Swain, M.V. and Thwaite, E.G. (1991/92) Metrologia 28 463.

    Article  ADS  Google Scholar 

  • Beussinesq, J. (1885) Applications des Potentiels a l’estude de equilibre dt du mouvement des solides elastiques, Gauthier-Villers, Paris.

    Google Scholar 

  • Bhushan, B., (ed) (1997) MicrolNanotribology and Its Applications,Kluwer Academic Publ., Dordrecht.

    Google Scholar 

  • Bishop, R.F., Hill, R. and Mott, N.F. (1945) The Theory of Indentation Hardness Tests, Proc. Phs. Soc. (London) 57, 147.

    Article  ADS  Google Scholar 

  • Burnett, P.J. and Page, T.F. (1984) Surface Softening in Silicon by Ion Implantation, J. Mater. Sci. 19 845.

    Article  ADS  Google Scholar 

  • Burnett, P.J. and Rickerby, D.S. (1987) The Mechanical Properties of Wear Resistant Coatings, I, Thin Solid Films 148 41.

    Article  ADS  Google Scholar 

  • Bumett, P.J. and Rickerby, D.S. (1987) The Mechanical Properties of Wear Resistant Coatings, II, Thin Solid Films 148 51.

    Article  ADS  Google Scholar 

  • Doerner, M.F. and Nix, W. (1986) Method for Intrepreting the Data from Depth Sensing Indentation Instruments, J. Mater. Res. 1 601.

    Article  ADS  Google Scholar 

  • Hanieswoth, S.V., Chandler, S.W. and Page, T.F. (1996) Analysis of Nanoindentation Load- Displacement Curves, in Plastic Deformation of Ceramics III, J. Routbort, R.C. Bradt and C. Brooks, Plenum Press, NY.

    Google Scholar 

  • Hertz, H. (1882), J. reine und angewandte Mathematik 92 156.

    MATH  Google Scholar 

  • Joslin, D.J., O’Hern, M.E., McHargue, C.J. and Clausing, R.E. (1989) Hardness of Amorphous Had Carbon Films Determined by the Ultra-Low Load Microindentation Technique, in R.L. Caswell (ed) Infrared Systems and Components, HI, SPIE Conf. Proc. 1015 pp 218–225.

    Chapter  Google Scholar 

  • Knight, J.C., Page, T.F. and Hutchings, I.M. (1989) Surface Deformation Behavior of TiC and TiN Coated Steels I. Indentation Response, Surface Engineering 5 213.

    Google Scholar 

  • Lawn, B.R. and Howes, T.R. (1981) Elastic Recovery at Hardness Indentations, J. Mater. Sci. 16 2745.

    Article  ADS  Google Scholar 

  • Lebouvier, D., Gilormin, P.G. and Ferber, E. (1984) Modelling of Indentations, J. Physics D 18 199.

    Article  ADS  Google Scholar 

  • Loubet, J.L., Georges, J.M., Marchesini, D. and Meille, G. (1984) Vickers Indentation Curves of MgO, J. Tribology 106 43.

    Article  Google Scholar 

  • Loubet, J.L., Georges, J.M. and Meille (1986) Vickers Indentation Curves of ElastoPlastic Materials, in P. Blau and B.R. Lawn (eds), Microindentation Techniques in Materials Science and Engineering, American Society for Testing and Materials, Philadelphia, PA., 72–79.

    Google Scholar 

  • Lowe, A.E.H. (1929) Phil Trans. A 228 377.

    Article  ADS  Google Scholar 

  • Marsh, D.M. (1964) Plastic Flow in Glass, Proc. Roy. Soc. (London) A279 420.

    ADS  Google Scholar 

  • Newey, D. Wilkens, M.A. and Pollock, H.M. (1982) An Ultra-Low Load Penetration Hardness Tester, J. Phys. E 15 119.

    Article  ADS  Google Scholar 

  • Newey, D., Pollock, H.M. and Wilkens, M.A. (1982) The Ultra-microhardness of Ion Iron and Steel at Submicron Depths and Its Correlation with Wear Resistance, in in V. Ashworth, W. Grant and R. Proctor (eds), Ion Implantation into Metals, Pergamon Press, Oxford, pp 157–166.

    Google Scholar 

  • Oliver, W.C. and McHargue, C.J. (1988) Characterization of the Hardness and Elastic Modulus of Thin Films Using a Mechanical Properties Microprobe, Thin Solid Films, 161 117.

    Article  ADS  Google Scholar 

  • Oliver, W.C. and Pharr, G.M. (1992) An Improved Technique for Determining Hardness and Elastic Modulus using Load and Depth Sensing Indentation Experiments, J. Mater. Res. 7, 1564.

    Article  ADS  Google Scholar 

  • Onitsch, E.M. (1947) Mikroskopie 2 345.

    Google Scholar 

  • Page, T.F., Oliver, W.C. and McHarue, C.J. (1992) The Unusual Deformation Behavior of Ceramic Crystals Subjected to Very Low Load Indentation, J. Mater. Res. 7, 450.

    Article  ADS  Google Scholar 

  • Pethica, J.B. (1982) Microhardness Tests with Penetration Depths Less than the Ion-Implanted Layer Thickness, in V. Ashworth, W. Grant and R. Proctor (eds), Ion Implantation into Metals, Pergamon Press, Oxford, pp 147–156.

    Google Scholar 

  • Pethica, J.B., Hutchings, R. and Woliver, W.C. (1983) Hardness Measurements at Penetration Depths as Small as 20 nm Phil Mag. A 48 593.

    Article  ADS  Google Scholar 

  • Pharr, G. and Oliver, W.C., and Clarke, D.R. (1990) The Mechanical Behavior of Silicon during Small Scale Indentation, J. Electronic Mater. 19 881.

    Article  ADS  Google Scholar 

  • Pollock, H.M., Maugis, D. and Barquins, M. (1986) Characterization of Submicrometer Surface Layers by Indentation, in P. Blau and B.R. Lawn (eds), Microindentation Techniques in Materials Science and Engineering, American Society for Testing and Materials, Philadelphia, PA. pp 47–71.

    Google Scholar 

  • Ramsay, M. Chandler, H.W. and Page, T.F. (1991) Modelling of the Contact Response of Coated Systems, Surfacesand Coatings Tech. 49 504.

    Article  Google Scholar 

  • Sakai, M. (1993) Energy Principle of Indentation-induced Inelastic Surface Deformation, Acta Met. et Mater. 41 1751.

    Article  Google Scholar 

  • Samuels, L.E. (1986) Microindentations in Metals, in P. Blau and B.R. Lawn (eds), Microindentation Techniques in Materials Science and Engineering, American Society for Testing and Materials, Philadelphia, PA. pp 5–25.

    Google Scholar 

  • Sargent, P.M. (1986) Use of the Indentation Size Effect on Microhardness for Materials Characterization, in P. Blau and B.R. Lawn (eds), Microindentation Techniques in Materials Science and Engineering,American Society for Testing and Materials, Philadelphia, PA., 1160–174.

    Google Scholar 

  • Shorshorov, M.Kh., Bulychev, S.I. and Alcklin, V.P. (1981) Work of Plastic and Elastic Deformation During Indentation, Soviet Phsics Doklady 26 769.

    ADS  Google Scholar 

  • Snedddon, I.N. (1965) Relation between Load and Penetration in the Axisymmetric Boussineq Problem for a Punch with Arbitary Profile, Int. J. Eng. Sci. 3, 47.

    Article  Google Scholar 

  • Stilwell, N.S. and Tabor, D. (1961) Elastic Recovery of Conical Indentations, Proc. Roy. Soc. (London) 78 169.

    Article  MathSciNet  ADS  Google Scholar 

  • Stone, D.S., Wu, T.W., Alexopoulos, P.S. and DeFontaine, W.R. (1989) in J.C. Bravman W.D. Nix, D.M. Bamett and D.A. Smith (eds), Materials Research Society, Pittsburgh, PA, pp 105–110.

    Google Scholar 

  • Tabor, D. (1948) A Simple Theory of Static and Dynamic Hardness, Proc. Roy. Soc. (London) A192 247.

    ADS  Google Scholar 

  • Tabor, D. (1951) The Hardness of Metals, Clarendon Press, Oxford.

    Google Scholar 

  • Tabor, D. (1986) Indentation Hardness and Its Measurement, in P. Blau and B.R. Lawn (eds), Microindentation Techniques in Materials Science and Engineering, American Society for Testing and Materials, Philadelphia, PA. pp 129–159.

    Google Scholar 

  • Twigg, P.C., McGurk, M.R., Haniesworth, S.V. and Page, T.F (1996) Apparent Indentation Plasticity in Ceramic Coated Systems, in Plastic Deformation of Ceramics III, J. Routbort, R.C. Bradt and C. Brooks, Plenum Press, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

McHargue, C.J. (1998). Mechanical Property Determination Using Nanoindentation Techniques. In: Bhushan, B. (eds) Tribology Issues and Opportunities in MEMS. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5050-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5050-7_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6121-6

  • Online ISBN: 978-94-011-5050-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics