Skip to main content

Statistical Thermodynamic Treatment of the AFM Tip in Liquid

  • Conference paper
  • 637 Accesses

Abstract

A statistical thermodynamic analysis of the atomic force microscope (AFM) is presented and applied to a single-atom tip moving quasistatically over a rigid substrate immersed in water. The RISM integral equation technique is used to compute the normal force (load) F z on the tip as a function of its height above the substrate. F z is found to be oscillatory, which implies that multiple scanning trajectories of the tip are possible under constant load. The unique trajectory along which the system is thermodynamically stable is revealed. This study shows that the tip may undergo hopping motion even over a defect-free substrate, due to layering of water molecules between the tip and substrate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Ohnesorge and G. Binnig, Science 260, 1451 (1993).

    Article  ADS  Google Scholar 

  2. S. J. O’Shea, M. E. Welland and T. Rayment, Appl. Phys. Lett, 60, 2356 (1992).

    Article  ADS  Google Scholar 

  3. J. P. Cleveland, T. E. Schäffer and P. K. Hansma, Phys. Rev. B. 52, R8692 (1995).

    Article  ADS  Google Scholar 

  4. C. Bustamante and D. Keller, Physics Today 48, 32 (1995).

    Article  ADS  Google Scholar 

  5. J. Yang, L.K. Tamm, A.P. Somlyo, and Z. Shao, J. Microsc. 171, 183 (1993).

    Article  Google Scholar 

  6. Y.L. Lyubchenko, P.I. Oden, D. Lampner, S.M. Lindsay, and K.A. Dunker, Nucl. Acids Res. 21, 1117 (1993).

    Article  Google Scholar 

  7. U. Landman, W. D. Luedtke, N. A. Burnham and R. J. Colton, Science 248, 454 (1990).

    Article  ADS  Google Scholar 

  8. L. D. Gelb and R. M. Lynden-Bell, Chem. Phys. Lett. 211, 328 (1993).

    Article  ADS  Google Scholar 

  9. Forces in Scanning Probe Methods, NATO ASI E286, edited by H.-J. Güntherodt, D. Anselmetti, and E. Meyer (Kluwer Academic Publishers, Dordrecht, 1995).

    Google Scholar 

  10. B. Bhushan, J.N. Israelachvili, and U. Landman, Nature 374, 607 (1995).

    Article  ADS  Google Scholar 

  11. W. Jorgensen, J. Am. Chem. Soc. 103, 335 (1981);

    Article  Google Scholar 

  12. B. M. Pettitt and P.J. Rossky, J. Chem. Phys. 77, 1451 (1982).

    Article  ADS  Google Scholar 

  13. K. Koga, H. Tanaka, and X.C. Zeng, J. Phys. Chem. 100, 16711 (1996).

    Article  Google Scholar 

  14. S. W. Chen and P.J. Rossky, J. Phys. Chem. 97, 6078 (1993);

    Article  Google Scholar 

  15. M. Matsumoto, H. Tanaka, and K. Nakanishi, J. Chem. Phys. 99, 6935 (1993).

    Article  ADS  Google Scholar 

  16. D. Chandler and H. C. Andersen, J. Chem. Phys. 57, 1930 (1972).

    Article  ADS  Google Scholar 

  17. F. Hirata, B. M. Pettitt, and P. J. Rossky, J. Chem. Phys. 77, 509 (1982).

    Article  ADS  Google Scholar 

  18. S. J. Singer and D. Chandler, Mol. Phys. 55, 621 (1985).

    Article  ADS  Google Scholar 

  19. F. Hirata and R. M. Levy, Chem. Phys. Lett. 136, 267 (1987);

    Article  ADS  Google Scholar 

  20. K. S. Schweizer and J. G. Curro, Phys. Rev. Lett. 58, 246 (1987).

    Article  ADS  Google Scholar 

  21. K. Koga and X.C. Zeng, Phys. Rev. Lett. 79, 853 (1997).

    Article  ADS  Google Scholar 

  22. R.G. Horn and J.N. Israelachvili, J. Chem. Phys. 75, 1400 (1981).

    Article  ADS  Google Scholar 

  23. D. J. Diestler, E. Rajasekaren, and X. C. Zeng, J. Phys. Chem. 101, 4992 (1997).

    Google Scholar 

  24. The loads (~ 10-11N) used here are comparable to typical load per atom in laboratory AFM experiments.

    Google Scholar 

  25. Similar behavior has also been found in computer simulation of liquids between two parallel solid surfaces, where the surface may take hopping motion normal to the surface due to the drainage or imbibition transition of the confined liquids. See M. Schoen, D.J. Diestler and J.H. Cushman, J. Chem. Phys. 100, 7707 (1994).

    Article  ADS  Google Scholar 

  26. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, and R.E. Smalley, Nature 384, 147 (1996);

    Article  ADS  Google Scholar 

  27. D.J. Keller, Nature 384, 111 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Koga, K., Zeng, X.C., Diestler, D.J. (1998). Statistical Thermodynamic Treatment of the AFM Tip in Liquid. In: Bhushan, B. (eds) Tribology Issues and Opportunities in MEMS. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5050-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5050-7_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6121-6

  • Online ISBN: 978-94-011-5050-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics