Skip to main content

Out of Equilibrium Fields in Inflationary Dynamics. Density Fluctuations

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 511))

Abstract

The energy and time scales during the inflationary stage of the universe calls for an out of equilibrium quantum field treatment. Moreover, the high energy densities involved (∼1/g ∼ 1012) make necessary the use of non-perturbative approaches as the large N and Hartree methods. We start these lectures by introducing the such non-perturbative out of equilibrium methods in cosmological universes. We discuss the renormalization procedure and the choice of initial conditions. We then study with these methods the non-linear dynamics of quantum fields in matter and radiation dominated FRW and de Sitter universes. For a variety of initial conditions, we compute the evolution of the inflaton, its quantum fluctuations and the equation of state. We investigate the phenomenon of explosive particle production due to spinodal instabilities and parametric amplification in FRW and de Sitter universes with and without symmetry breaking. We find that the particle production is somewhat sensitive to the expansion of the universe. In the large N limit for symmetry breaking scenarios, we determine generic late time fields behavior for any flat FRW and de Sitter cosmology. We find that quantum fluctuations damp in FRW as the square of the scale factor while the order parameter approaches a minimum of the potential at the same rate. We present a complete and numerically accessible renormalization scheme for the equation of motion and the energy momentum tensor in flat cosmologies. In this scheme the renormalization constants are independent of time and of the initial conditions. Furthermore, we consider an O(N) inflaton model coupled self-consistently to gravity in the semiclassical approximation, where the field is subject to ‘new inflation’ type initial conditions. We study the dynamics self-consistently and non-perturbatively with non-equilibrium field theory methods in the large N limit. We find that spinodal instabilities drive the growth of non-perturbatively large quantum fluctuations which shut off the inflationary growth of the scale factor. We find that a very specific combination of these large fluctuations plus the inflaton zero mode assemble into a new effective field. This new field behaves classically and it is the object which actually rolls down. We show how this reinterpretation qualitatively saves the standard picture of how metric perturbations are generated during inflation and that the spinodal growth of fluctuations dominates the time dependence of the Bardeen variable for superhorizon modes during inflation. We compute the amplitude and index for the spectrum of scalar density and tensor perturbations and argue that in all models of this type the spinodal instabilities are responsible for a ‘red’ spectrum of primordial scalar density perturbations. The decoherence aspects and the quantum to classical transition through inflation are studied in detail by following the full evolution of the density matrix.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. H. Guth, Phys. Rev. D23 347 (1981).

    ADS  Google Scholar 

  2. For thorough reviews of standard and inflationary cosmology see: E. W. Kolb and M. S. Turner, The Early Universe (Addison Wesley, Redwood City, C.A. 1990). A. Linde, Particle Physics and Inflationary Cosmology, (Harwood 1990) and ref. [5].

    Google Scholar 

  3. For more recent reviews see: M. S. Turner, astro-ph-9703197; astro-ph-9703196; astroph-9703174; astro-ph-9703161; astro-ph-9704062; astro-ph-9704024. A. Linde, in Current Topics in Astrofundamental Physics, Proceedings of the Chalonge Erice School, N. Sánchez and A. Zichichi Editors, Nato ASI series C, vol. 467, 1995, Kluwer Acad. Publ. A. R. Liddle, astro-ph-9612093, Lectures at the Casablanca School Morocco, 1996.

    Google Scholar 

  4. G. Smoot, in the Proceedings of the Vth. Erice Chalonge School on Astrofundamental Physics, p. 407–484, N. Sánchez and A. Zichichi eds., World Scientific, 1997.

    Google Scholar 

  5. A. R. Liddle and D. H. Lyth, Phys. Rep. 231, 1 (1993).

    Google Scholar 

  6. for reviews of inflation, see R. Brandenberger, Rev. of Mod. Phys. 57 1 (1985); Int. J. Mod. Phys. A2 77 (1987) and ref. [2].

    Google Scholar 

  7. A. D. Dolgov and A. D. Linde, Phys. Lett. B116 329 (1982)

    ADS  Google Scholar 

  8. L. F. Abbott, E. Farhi and M. Wise, Phys. Lett. B117 29 (1982).

    ADS  Google Scholar 

  9. J. Traschen and R. Brandenberger, Phys Rev D42 2491 (1990);

    ADS  Google Scholar 

  10. Y. Shtanov, J. Traschen and R. Brandenberger, Phys. Rev. D51 5438 (1995).

    ADS  Google Scholar 

  11. L. Kofman, A. Linde and A. Starobinsky, Phys. Rev. Lett. 73 3195 (1994) and 76 1011 (1996); Phys. Rev. D56, 3258 (1997); gr-gc/9508019 (1995). L. Kofman, astroph/9605155 (1996).

    Google Scholar 

  12. D. Boyanovsky and H. J. de Vega, Phys. Rev. D47 2343 (1993).

    ADS  Google Scholar 

  13. D. Boyanovsky, H. J. de Vega, R. Holman, D.-S. Lee and A. Singh, Phys. Rev. D51 4419 (1995);

    ADS  Google Scholar 

  14. D. Boyanovsky, M. D’Attanasio, H. J. de Vega, R. Holman and D. S. Lee, Phys. Rev. D52 6805 (1995);

    ADS  Google Scholar 

  15. For reviews see, D. Boyanovsky, H. J. de Vega and R. Holman, in the Proceedings of the Second Paris Cosmology Colloquium, Observatoire de Paris, June 1994, p. 127215, H. J. de Vega and N. Sánchez Editors, World Scientific, 1995; D. Boyanovsky, M. D’Attanasio, H. J. de Vega, R. Holman and D.-S. Lee, ‘,New aspects of reheating’, in the Proceedings of the Erice Chalonge School, ‘String Gravity and Physics at the Planck Energy Scale’, NATO ASI, N. Sánchez and A. Zichichi Editors, Kluwer 1996, p. 451–492.

    Google Scholar 

  16. D. Boyanovsky, H.J. de Vega, R. Holman, J.F.J. Salgado, Phys. Rev. D54 7570 (1996). D. Boyanovsky, H. J. de Vega and R. Holman in the Proceedings of the Vth. Erice Chalonge School on Astrofundamental Physics, p. 183–270, N. Sánchez and A. Zichichi eds., World Scientific, 1997.

    Google Scholar 

  17. D. Boyanovsky, C. Destri, H.J. de Vega, R. Holman and J.F.J. Salgado, ‘Asymptotic Dynamics in Scalar Field Theory: Anomalous Relaxation’, hep-ph/9711384.

    Google Scholar 

  18. D. Boyanovsky, H. J. de Vega, and R. Holman, Phys. Rev. D49 2769 (1994).

    ADS  Google Scholar 

  19. D. Boyanovsky, D. Cormier, H. J. de Vega, R. Holman, A. Singh, M. Srednicki, Phys. Rev. D56 1939 (1997).

    ADS  Google Scholar 

  20. D. Boyanovsky, D. Cormier, H. J. de Vega and R. Holman, Phys. Rev. D55 3373 (1997).

    ADS  Google Scholar 

  21. ‘Non-Perturbative Quantum Dynamics of a New Inflation Model’, D. Boyanovsky, D.Cormier, H. J. de Vega, R. Holman and S. P. Kumar, hep-ph/9709232 to appear in Phys. Rev. D 15 february 1998.

    Google Scholar 

  22. D. Boyanovsky, H.J. de Vega, R. Holman and J. F. J. Salgado, astro-ph/9609007, to appear in the Proceedings of the Paris Euronetwork Meeting ‘String Gravity’.

    Google Scholar 

  23. D. Boyanovsky, D-S. Lee, and A. Singh, Phys. Rev. D48 800 (1993).

    ADS  Google Scholar 

  24. D. Boyanovsky, M. D’Attanasio, H. J. de Vega and R. Holman, Phys. Rev. D54 1748 (1996), and references therein.

    ADS  Google Scholar 

  25. H.J. de Vega and J. F. J. Salgado, Phys. Rev. D 56 6524 (1997).

    ADS  Google Scholar 

  26. S. Yu. Khlebnikov and I.I. Tkachev, Phys. Rev. Lett. 77 219 (1996); S. Yu. Khlebnikov and I.I. Tkachev, hep-ph/9608458 (1996).

    Google Scholar 

  27. D.T. Son, Phys. Rev. D54 3745 (1996); hep-ph/9601377.

    ADS  Google Scholar 

  28. L. Kofman, A. Linde and A. Starobinsky, Phys. Rev. Lett. ’76 1011, (1996); I.I Tkachev, Phys. Lett. B376 35 (1996); A. Riotto and I.I. Tkachev, Phys. Lett. B385 57 (1996); E.W. Kolb and A. Riotto, astro-ph/9602095 (1996).

    Google Scholar 

  29. D.I. Kaiser, Phys. Rev D53 1776 (1996) and D56 706 (1997), hep-ph/9707516.

    Google Scholar 

  30. H. Fujisaki, K. Kumekawa, M. Yamaguchi and M.Yoshimura, Phys. Rev. D53 6805 (1996); M. Yoshimura, Progr. Theor. Phys. 94 873 (1995); hep-ph/9605246.

    Google Scholar 

  31. J. Schwinger, J. Math. Phys. 2 407 (1961); P. M. Bakshi and K. T. Mahanthappa, J. Math. Phys. 4 1 (1963); ibid, 12; L. V. Keldysh, Soy. Phys. JETP 20 1018 (1965); A. Niemi and G. Semenoff, Ann. of Phys. (N.Y.) 152 105 (1984); Nucl. Phys. B [FS10], 181 (1984); E. Calzetta, Ann. of Phys. (N.Y.) 190 32 (1989); R. D. Jordan, Phys. Rev. D33 444 (1986); N. P. Landsman and C. G. van Weert, Phys. Rep. 145 141 (1987); R. L. Kobes and K. L. Kowalski, Phys. Rev. D34 513 (1986); R. L. Kobes, G. W. Semenoff and N. Weiss, Z. Phys. C29 371 (1985).

    Google Scholar 

  32. For a thorough exposition of non-equilibrium methods in cosmology see, for example: E. Calzetta and B.-L. Hu, Phys. Rev. D35 495 (1988); ibid D37 2838 (1988); J. P. Paz, Phys. Rev. D41 1054 (1990); ibid D42 529 (1990); B.-L. Hu in Bannf/Cap Workshop on Thermal Field Theories: proceedings,edited by F.C. Khanna, R. Kobes, G. Kunstatter, H. Umezawa (World Scientific, Singapore, 1994), p.309 and in the Proceedings of the Second Paris Cosmology Colloquium, Observatoire de Paris, edited by H. J. de Vega and N. Sánchez (World Scientific, Singapore, 1995), p.111 and references therein.

    Google Scholar 

  33. H. Leutwyler and S. Mallik, Ann. of Phys. (N.Y.) 205 1 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. O. Eboli, R. Jackiw and S.-Y. Pi, Phys. Rev. D37 3557 (1988);

    ADS  Google Scholar 

  35. M. Samiullah, O. Eboli and S-Y. Pi, Phys. Rev. D44 2335 (1991).

    MathSciNet  ADS  Google Scholar 

  36. J. Guven, B. Liebermann and C. Hill, Phys. Rev. D39 438 (1989).

    ADS  Google Scholar 

  37. N. D. Birrell and P.C.W. Davies, Quantum fields in curved space (Cambridge Univ. Press, Cambridge, 1986).

    Google Scholar 

  38. J. Baacke, K. Heitmann and C. Pätzold, Phys. Rev. D55 2320 (1997), hep-ph/9706274, hep-th/9711144 and hep-ph/9712506.

    Google Scholar 

  39. M. Abramowitz and I.E. Stegun (eds.), Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1972), chapter 13.

    MATH  Google Scholar 

  40. The Scalar, Vector and Tensor Contributions to CMB anisotropies from Topological Defects’, by N. Turok, Ue-Li Pen, U. Seljak astro-ph/9706250 (1997). ‘The case against scaling defect models of cosmic structure formation’, A. Albrecht, R. A. Battye, J.Robinson, astro-ph/9707129 (1997). ‘CMB Anisotropy Induced by Cosmic Strings on Angular Scales > 15’, by B. Allen, R. R. Caldwell, S. Dodelson, L. Knox, E. P. S. Shellard, A. Stebbins, astro-ph/9704160 (1997).

    Google Scholar 

  41. D. H. Lyth, hep-ph-9609431 (1996). S. Dodelson, W. H. Kinney and E. W. Kolb, astroph-9702166.

    Google Scholar 

  42. A.D. Linde, Phys. Lett. B116, 335 (1982). A. Vilenkin and L. H. Ford, Phys. Rev. D26, 1231 (1982). A. Vilenkin, Nucl. Phys. B226, 504 (1983); Nucl. Phys. B226, 527 (1986).

    Google Scholar 

  43. A. Vilenkin, Phys. Lett. B115, 91 (1982).

    ADS  Google Scholar 

  44. P. J. Steinhardt and M. S. Turner, Phys. Rev. D29, 2162, (1984).

    ADS  Google Scholar 

  45. A. Guth and S-Y. Pi, Phys. Rev. D32, 1899 (1985).

    MathSciNet  ADS  Google Scholar 

  46. For non-equilibrium methods in different contexts see for example: F. Cooper, J. M. Eisenberg, Y. Kluger, E. Mottola, B. Svetitsky, Phys. Rev. Lett. 67, 2427 (1991); F. Cooper, J. M. Eisenberg, Y, Kluger, E. Mottola, B. Svetitsky, Phys. Rev. D48, 190 (1993).

    Google Scholar 

  47. F. Cooper and E. Mottola, Mod. Phys. Lett. A 2, 635 (1987); F. Cooper, S. Habib, Y. Kluger, E. Mottola, J. P. Paz, P. R. Anderson, Phys. Rev. D50, 2848 (1994). F. Cooper, S.-Y. Pi and P. N. Stancioff, Phys. Rev. D34, 3831 (1986). F. Cooper and E. Mottola, Phys. Rev. D36, 3114 (1987).

    Google Scholar 

  48. F. Cooper, Y. Kluger, E. Mottola, J. P. Paz, Phys. Rev. D51, 2377 (1995).

    ADS  Google Scholar 

  49. S. A. Ramsey, B. L. Hu, Phys. Rev. D56, 678 (1997).

    MathSciNet  ADS  Google Scholar 

  50. D. Boyanovsky, H. J. de Vega and R. Holman, Phys. Rev. D 51 734 (1995).

    ADS  Google Scholar 

  51. D. Boyanovsky, H. J. de Vega, R. Holman and S. Prem Kumar, Phys. Rev. D56 3929 - 5233 (1997).

    ADS  Google Scholar 

  52. The last reference under [40].

    Google Scholar 

  53. D. Polarski and A. A. Starobinsky, Class. Quant. Gray. 13 377 (1996);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. J. Lesgourgues, D. Polarski and A. A. Starobinsky, Nucl. Phys. B497, 479 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  55. L. P. Grishchuk, Phys. Rev. D 45, 4717 (1992).

    ADS  Google Scholar 

  56. V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rep. 215, 293 (1992).

    Article  MathSciNet  Google Scholar 

  57. J. Bardeen, Phys. Rev. D22, 1882 (1980).

    MathSciNet  ADS  Google Scholar 

  58. R. R. Caldwell, Class. Quant. Gray. 13, 2437 (1995).

    Google Scholar 

  59. J. Martin and D. J. Schwarz, gr-qc-9704049 (1997).

    Google Scholar 

  60. K. M. Gorski, A. J. Banday, C. L. Bennett, G. Hinshaw, A. Kogut and G. F. Smoot, (astro-ph-9601063) (submitted to ApJ. Lett.).

    Google Scholar 

  61. L. P. Grishchuk, Phys. Rev. D. 52, 5549, (1995); Proceedings of the Erice Chalonge School NATO ASI on ‘String Gravity and Physics at the Planck Scale’, Ed. N. Sánchez and A. Zichichi, (Kluwer, 1996), p. 369; Phys. Rev. D53 (1996) 6784; Proceedings of the NATO ASI on ‘Current Topics in Astrofundamental Physics’, Ed. N. Sanchez and A. Zichichi (Kluwer, 1995), p. 205.

    Google Scholar 

  62. J. E. Lidsey, A. R. Liddle, E. W. Kolb, E. J. Copeland, T. Barreiro, M. Abney, Rev. Mod. Phys. 69, 373, (1997).

    Article  ADS  Google Scholar 

  63. E. D. Stewart and D. H. Lyth, Phys. Lett. B302, 171 (1993).

    ADS  Google Scholar 

  64. S. Habib, Phys. Rev. D 46, 2408 (1992); Phys. Rev. D 42, 2566, (1990); S. Habib and R. Laflamme, Phys. Rev. D42, 4056, (1990), and references therein.

    Google Scholar 

  65. See eq.(53) in the first reference under [43].

    Google Scholar 

  66. I. Zlatev, G. Huey and P. J. Steinhardt, astro-ph/9709006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boyanovsky, D., Cormier, D., de Vega, H.J., Holman, R., Kumar, S.P. (1998). Out of Equilibrium Fields in Inflationary Dynamics. Density Fluctuations. In: Sánchez, N., Zichichi, A. (eds) Current Topics in Astrofundamental Physics: Primordial Cosmology. NATO ASI Series, vol 511. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5046-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5046-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6119-3

  • Online ISBN: 978-94-011-5046-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics