Skip to main content

Fractal Dimensions and Scaling Laws in the Interstellar Medium and Galaxy Distributions: A New Field Theory Approach

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 511))

Abstract

We develop a field theoretical approach to the cold interstellar medium (ISM) and large scale structure of the universe. We show that a non-relativistic self-gravitating gas in thermal equilibrium with variable number of atoms or fragments is exactly equivalent to a field theory of a single scalar field \( \phi \left( {\vec x} \right) \) with exponential self-interaction. We analyze this field theory perturbatively and non-perturbatively through the renormalization group approach. We show scaling (critical) behaviour for a continuous range of the temperature and of the other physical parameters. We derive in this framework the scaling relation M(R)R dH for the mass on a region of size R, and Δυ ∼ R q for the velocity dispersion where \( q=\frac{1}{2}({d_H}- 1) \). For the density-density correlations we find a power-law behaviour for large distances \( \sim \left| {{{\vec r}_i}} \right. - {\left. {{{\vec r}_2}} \right|^{2dH - 6}} \) The fractal dimension d H turns out to be related with the critical exponent v of the correlation length by d H = 1/v. The renormalization group approach for a single component scalar field in three dimensions states that the long-distance critical behaviour may be governed by the (non-perturbative) Ising fixed point. The Ising values of the scaling exponents are v = 0.631…, d H = 1.585… and q = 0.293…. Mean field theory yields for the scaling exponents v = 1/2, d H = 2 and q = 1/2. Both the Ising and the mean field values are compatible with the present ISM observational data: 1.4 ≤ d H ≤ 2, 0.3 ≤ q≤ 0.6. As typical in critical phenomena, the scaling behaviour and critical exponents of the ISM can be obtained without dwelling into the dynamical (time-dependent) behaviour.

We develop a field theoretical approach to the galaxy distribution. We consider a gas of self-gravitating masses in quasi-thermal equilibrium on the FRW background. We show that it exhibits scaling behaviour by renormalization group methods. The galaxy correlations are first computed assuming homogeneity for very large scales and then without assuming homogeneity. In the first case we find ξ(r)≡< ρ \( (\vec r_0 )\rho (\vec r_0 + \vec r) \) >/< ρ >2 -1 ~ r, with γ = 2. In the second case we find Γ(r)=> ρ \( (\vec r_0 )\rho (\vec r_0 + \vec r) \) > ~ rD-3 with with D = 2. while the universe becomes more and more homogeneous at large scales, statistical analysis of galaxy catalogs have revealed a fractal structure at small-scales (λ<100h-1 Mpc), with a fractal dimension D = 1.5-2 (Sylos Labini et al 1996). We study the thermodynamics of a self-gravitating system with the theory of critical phenomena and finite-size scaling and show that gravity provides a dynamical mechanism to produce this fractal structure. Only a limited, (although large), range of scales is involved, between a short-distance cut-off below which other physics intervene, and a large-distance cut-off, where the thermodynamic equilibrium is not satisfied. The galaxy ensemble can be considered at critical conditions, with large density fluctuations developping at any scale. From the theory of critical phenomena, we derive the two independent critical exponents v and η and predict the fractal dimension D = l/v to be either 1.585 or 2, depending on whether the long-range behaviour is governed by the Ising or the mean field fixed points, respectively. Both set of values are compatible with present observations. In addition, we predict the scaling behaviour of the gravitational potential to be \( r - \frac{1}{2}(1 + \eta ) \). That is, r−05 for mean field or r−0.515 for the Ising fixed point. The theory allows to compute the three and higher density correlators without any assumption or Ansatz. We find that the N-points density scales as \( r_1^{(N-1)(D-3)} \) when \( r_1 > > r_{i,} 2 \le i \le N. \). There are no free parameters in this theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. J. de Vega, N. Sánchez and F. Combes, Nature, 383, 56 (1996).

    Article  ADS  Google Scholar 

  2. H. J. de Vega, N. Sánchez and F. Combes, Phys. Rev. D54, 6008 (1996) (dVSC).

    ADS  Google Scholar 

  3. H. J. de Vega, N. Sánchez and F. Combes, ‘The fractal structure of the universe: a new field theory approach’, preprint.

    Google Scholar 

  4. R. B. Larson, M.N.R.A.S. 194, 809 (1981)

    ADS  Google Scholar 

  5. J. M. Scalo, in ‘Interstellar Processes’, D.J. Hollenbach and H.A. Thronson Eds., D. Reidel Pub. Co, p. 349 (1987).

    Google Scholar 

  6. R. B. Larson, M.N.R.A.S. 256, 641 (1992)

    ADS  Google Scholar 

  7. D. Pfenniger, F. Combes, L. Martinet, A&A 285, 79 (1994)

    ADS  Google Scholar 

  8. D. Pfenniger, F. Combes, A&A 285, 94 (1994)

    ADS  Google Scholar 

  9. L. Landau and E. Lifchitz, Mécanique des Fluides, Eds. MIR, Moscou 1971.

    MATH  Google Scholar 

  10. C.F. von Weizsäcker, ApJ, 114, 165 (1951).

    Article  Google Scholar 

  11. L. P. Kadanoff, ‘From Order to Chaos’, World. Sc. Pub.(1993).

    Google Scholar 

  12. S. Edward and A. Lenard, J. M. P. 3, 778 (1962).

    Article  Google Scholar 

  13. S. Albeverio and R. Hoegh-Krohn, C. M. P. 30, 171 (1973).

    MathSciNet  Google Scholar 

  14. R. L. Stratonovich, Doklady, 2, 146 (1958).

    Google Scholar 

  15. J. Hubbard, Phys. Rev. Lett, 3, 77 (1959).

    Article  ADS  Google Scholar 

  16. J. Zittartz, Z. Phys., 180, 219 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifchitz, Physique Statistique, 4ème édition, Mir-Ellipses, 1996.

    Google Scholar 

  18. S. Samuel, Phys. Rev. D 18, 1916 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  19. Wilson K.G., Kogut, J., Phys. Rep. 12, 75 (1974).

    Article  ADS  Google Scholar 

  20. K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975) and Rev. Mod. Phys. 55, 583 (1983).

    Article  ADS  Google Scholar 

  21. C. Domb & M. S. Green Phase transitions and Critical Phenomena vol. 6,, Academic Press, 1976.

    Google Scholar 

  22. J. J. Binney, N. J. Dowrick, A. J. Fisher and M. E. J. Newman, The Theory of Critical Phenomena, Oxford Science Publication, 1992.

    Google Scholar 

  23. See for example, H. Stanley in Fractals and Disordered Systems, A. Bunde and S. Havlin editors, Springer Verlag, 1991.

    Google Scholar 

  24. See for example, W. C. Saslaw, ‘Gravitational Physics of stellar and galactic systems’, Cambridge Univ. Press, 1987.

    Google Scholar 

  25. A. Hasenfratz and P. Hasenfratz, Nucl.Phys. B270, 687 (1986). T. R. Morris, Phys. Lett. B329, 241 (1994) and B334, 355 (1994).

    Google Scholar 

  26. S. Chandrasekhar, ‘An Introduction to the Study of Stellar Structure’, Chicago Univ. Press, 1939.

    Google Scholar 

  27. G. Horwitz and J. Katz, Ap. J. 222, 941 (1978) and 223, 311 (1978).

    Article  ADS  Google Scholar 

  28. J. Katz, G. Horwitz and A. Dekel, Ap. J. 223, 299 (1978).

    Article  ADS  Google Scholar 

  29. H. J. de Vega, N. Sánchez, B. Semelin and F. Combes, in preparation.

    Google Scholar 

  30. S.C. Kleiner, R.L. Dickman, ApJ 286, 255 (1984), ApJ 295, 466 (1985), ApJ 312, 837 (1987)

    Article  ADS  Google Scholar 

  31. A. M. Polyakov, Phys. Lett. B103, 207 (1981).

    MathSciNet  ADS  Google Scholar 

  32. J. Ambj0rn and Y. Watabiki, Nucl. Phys. B 445, 129 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. J. Ambjorn, J. Jurkiewicz and Y. Watabiki, Nucl. Phys. B 454, 313 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  34. Y. Watabiki, hep-th/9605185.

    Google Scholar 

  35. J. Pérez Mercader, T. Goldman, D. Hochberg and R. Laflamme, astro-ph/9506127 and LAEFF-96/06.

    Google Scholar 

  36. Hochberg D., Pérez Mercader J., Gen. Relativity and Gravit. 28, 1427 (1996).

    Article  ADS  MATH  Google Scholar 

  37. Abell G.O.: 1958, ApJS 3, 211

    Article  ADS  Google Scholar 

  38. Balian R., Schaeffer R.: 1988, ApJ 335, L43

    Article  ADS  Google Scholar 

  39. Balian R., Schaeffer R.: 1989, A&A 226, 373

    MathSciNet  ADS  Google Scholar 

  40. Bouchet F.R., Schaeffer R., Davis M.: 1991, ApJ 383, 19

    Article  ADS  Google Scholar 

  41. Castagnoli C., Provenzale A.: 1991, A&A 246, 634

    ADS  Google Scholar 

  42. Coleman P.H., Pietronero L., Sanders R.H.: 1988, A&A 200, L32

    ADS  Google Scholar 

  43. Coleman P.H., Pietronero L.: 1992, Phys. Rep. 231, 311

    Article  ADS  Google Scholar 

  44. Colombi S., Bouchet F.R., Hernquist L.: 1996, ApJ 465, 14

    Article  ADS  Google Scholar 

  45. Davis M.A., Peebles P.J.E.: 1977, ApJS 34, 425

    Article  MathSciNet  ADS  Google Scholar 

  46. Davis M.A., Peebles P.J.E.: 1983, ApJ 267, 465

    Article  ADS  Google Scholar 

  47. Davis M.A., Meiksin M.A., Strauss L.N., da Costa and Yahil A.: 1988, ApJ 333, L9

    Article  ADS  Google Scholar 

  48. de Lapparent V., Geller M.J., Huchra J.P.: 1986, ApJ 302, L1

    Article  ADS  Google Scholar 

  49. de Vaucouleurs G.: 1960, ApJ 131, 585

    Article  ADS  Google Scholar 

  50. de Vaucouleurs G.: 1970, Science 167, 1203

    Article  ADS  Google Scholar 

  51. Di Nella H., Montuori M., Paturel G., Pietronero L., Sylos Labini F.: 1996, A&A 308, L33

    ADS  Google Scholar 

  52. Dubrulle B., Lachieze-Rey M.: 1994, A&A 289, 667

    ADS  Google Scholar 

  53. Einasto J.: 1989, in `Astronomy, cosmology and fundamental physics’, Proc. of the 3rd ESO-CERN Symposium, Dordrecht, Kluwer, p. 231

    Book  Google Scholar 

  54. Falgarone, E., Phillips, T.G., Walker, C.K.: 1991, ApJ 378, 186

    Article  ADS  Google Scholar 

  55. Geller M.J., Huchra J.Y.: 1989, Science 246, 897

    Article  ADS  Google Scholar 

  56. Hamilton A.J.S.: 1993, ApJ 417, 19

    Article  ADS  Google Scholar 

  57. Itoh M., Inagaki S., Saslaw W.C.: 1993, ApJ 403, 459

    Article  ADS  Google Scholar 

  58. Itzykson C., Drouffe, J.-M., `Théorie Statistique des Champs’, Inter/CNRS, 1989, Paris.

    Google Scholar 

  59. Lin H. et al: 1996, ApJ 471, 617

    Article  ADS  Google Scholar 

  60. Mandelbrot B.B.: 1975, `Les objets fractals’, Paris, Flammarion

    Google Scholar 

  61. Mandelbrot B.B.: 1982, `The fractal geometry of nature’, New York: Freeman

    Google Scholar 

  62. Martinez V.J., Paredes S., Saar E.: 1993, MNRAS 260, 365

    ADS  Google Scholar 

  63. Ostriker J.P.: 1993, ARAA 31, 689

    Article  ADS  Google Scholar 

  64. Peebles P.J.E.: 1980,`The Large-scale structure of the Universe’, Princeton Univ. Press

    Google Scholar 

  65. Peebles P.J.E.: 1993, `Principles of physical cosmology’ Princeton Univ. Press

    Google Scholar 

  66. Pfenniger D., Combes F.: 1994, A&A 285, 94

    ADS  Google Scholar 

  67. Pietronero L.: 1987, Physica A, 144, 257

    Article  ADS  MATH  Google Scholar 

  68. Pietronero L., Montuori M., Sylos Labini F.: 1997, in `Critical Dialogs in Cosmology’, ed. N. Turok, astro-ph/9611197

    Google Scholar 

  69. Postman M., Geller M.J., Huchra J.P.: 1986, AJ 91, 1267

    Article  ADS  Google Scholar 

  70. Postman M., Huchra J.P., Geller M.J.: 1992, ApJ 384, 404

    Article  ADS  Google Scholar 

  71. Saslaw W.C., Hamilton A.J.S.: 1984, ApJ 276, 13

    Article  ADS  Google Scholar 

  72. Saslaw W.C., Fang F.: 1996, ApJ 460, 16

    Article  ADS  Google Scholar 

  73. Scott E.L., Shane S.D., Swanson M.D.: 1954, ApJ 119, 91

    Article  ADS  Google Scholar 

  74. Shapley H.: 1934, MNRAS 94, 791

    ADS  Google Scholar 

  75. Sheth R.K., Saslaw W.C.: 1996, Apj 470, 78

    Article  ADS  Google Scholar 

  76. Smoot G., et al: 1992, ApJ 396, Ll

    Article  Google Scholar 

  77. Soneira R.M., Peebles P.J.E.: 1978, AJ 83, 845

    Article  ADS  Google Scholar 

  78. Sylos Labini F.: 1994, ApJ 433, 464

    Article  ADS  Google Scholar 

  79. Sylos Labini F., Amendola L.: 1996, ApJ 438, Ll

    Google Scholar 

  80. Sylos Labini F., Pietronero L.: 1996, ApJ 469, 26

    Article  ADS  Google Scholar 

  81. Sylos Labini F., Gabrielli A., Montuori M., Pietronero L.: 1996, Physica A 226, 195

    Article  ADS  Google Scholar 

  82. Totsuji H., Kihara T., PASJ 21, 221 (1969).

    ADS  Google Scholar 

  83. White S.D.M.: 1979, MNRAS 186, 145

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Vega, H.J., Sánchez, N., Combes, F. (1998). Fractal Dimensions and Scaling Laws in the Interstellar Medium and Galaxy Distributions: A New Field Theory Approach. In: Sánchez, N., Zichichi, A. (eds) Current Topics in Astrofundamental Physics: Primordial Cosmology. NATO ASI Series, vol 511. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5046-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5046-0_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6119-3

  • Online ISBN: 978-94-011-5046-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics