Skip to main content

Vortex Breakdown as a Catastrophe

  • Conference paper
IUTAM Symposium on Dynamics of Slender Vortices

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 44))

  • 440 Accesses

Abstract

By studying swirling viscous jets, we develop a new explanation of vortex breakdown, show how solution non-uniqueness appears through cusp and fold catastrophes as the Reynolds number Re increases, and obtain analytical solutions for Re → ∞. Although inviscid theories also involve fold catastrophe, they have a strong limitation: the dependence of the head H and circulation Гd on stream function ψ is undetermined inside a recirculatory zone. Analytical continuation and stagnation zone models used to resolve this indeterminacy appear inadequate for swirling jets: H(ψ) and Гd(ψ), which we obtain here by the inviscid limit, differ from those based on the inviscid theories. We therefore suggest a new model consistent with the limiting transition. Also, we analyze turbulent vortex breakdown with a conical wake which has been recently observed at large Re.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lamboume, N.C. & Bryer, D.W.: The Bursting of Leading Edge Vortices — Some Observations and Discussion of the Phenomenon, Aeronautical Research Council Report and Memoranda 3282, 1962.

    Google Scholar 

  2. Saffman, P.G.: Vortex Dynamics, Cambridge University Press, 1992.

    MATH  Google Scholar 

  3. Lowson, M.V.: Some experiments with vortex breakdown, J. of Roy. Aeronautical Soc. 68 (1964), 343.

    Google Scholar 

  4. Muylaert, I M.: Effect of compressibility on vortex bursting on slender delta wings, VKI Project Report 1980–21.

    Google Scholar 

  5. Arnol’d, V. I.: Catastrophe Theory, Springer-Verlag, 1984.

    Google Scholar 

  6. Burggraf, O.R. & Foster, M.R.: Continuation or breakdown of tornado-like vortices, J. Fluid Mech. 80 (1977), 685–704.

    Article  MATH  Google Scholar 

  7. Lugt, H.J.: Vortex Breakdown in Atmospheric Columnar Vortices, Bul. Amer. Meteorol. Soc. 70 (1989), 1526–1537.

    Article  Google Scholar 

  8. Shtem, V. & Hussain, F.: Hysteresis in a swirling jet as a model tornado, Phys. Fluids A 5 (1993), 2183–2195.

    Article  MathSciNet  Google Scholar 

  9. Spotar, S.Yu. & Terekhov, V.I.: Two spontaneously alternating regimes of vortex flow above a plane, J. Appl. Mech. Techn. Phys. (1987) No 2, 68–70.

    Google Scholar 

  10. Goldshtik, M. A.: Viscous flow paradoxes, Ann. Rev. Fluid Mech., 22 (1990) 441–472.

    Article  MathSciNet  Google Scholar 

  11. Atthaus, W., Brucker, Ch. & Weimer, M. Breakdown of slender vortices, In: Green S.I. (ed.) Fluid vortices, 373–426, Kluwer, 1995

    Chapter  Google Scholar 

  12. Berger, S. A.: Ellipticity in the vortex breakdown problem. In: Instability, Transition, and Turbulence, 96–106, ICASE/NASA LaRC Series, Springer Verlag, 1992.

    Chapter  Google Scholar 

  13. Sarpkaya, T.: Vortex Breakdown in Swirling Conical Flows. AIAA Journal, 9 (1971), 1792–1799.

    Article  Google Scholar 

  14. Faler, J. H. & Leibovich, S.: Disrupted States of Vortex flow and Vortex Breakdown. Phys. Fluids 20 (1977), 1385–1400.

    Article  Google Scholar 

  15. Sarpkaya, T.: Turbulent vortex breakdown. Phys. Fluids 7 (1995), 2301–2303.

    Article  Google Scholar 

  16. Hall, M.: Vortex Breakdown. Ann. Rev. Fluid Mech. 4 (1972), 195–218.

    Article  Google Scholar 

  17. Leibovich, S.: The structure of vortex breakdown, Ann. Rev. Fluid Mech., 10 (1978), 221–246.

    Article  Google Scholar 

  18. Squire, H.B.: Rotating fluids, Surveys in Mechanics, Cambridge University Press, 139–161, 1956.

    Google Scholar 

  19. Benjamin, T.B.: Theory of vortex breakdown I. Fluid Mech. 14 (1962), 593–629.

    Article  MathSciNet  Google Scholar 

  20. Escudier, M. E. & Keller, J. J.: Vortex breakdown: a two-stage transition. AGARD CP No. 342 Aerodynamics of vortical type, flows, paper 25, 1983.

    Google Scholar 

  21. Keller, J.J., Egli, W. & Exley, J.: Force-and loss-free transitions between flow states, Z4MP 36 (1985), 854–889.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ludwieg, H.: Zur Erklarung der Instabilitat der uber angestellten Deltaflugeln auftretenden freien Wirbelkerne, Zeitschrift. für Flugwissenschaften 10 (1962), 242–249.

    MATH  Google Scholar 

  23. Leibovich, S.: Vortex Stability and Breakdown: Survey and Extension, AIAA Journal 22 (1983), 1192–1206.

    Google Scholar 

  24. Foster, M. R.: Nonaxisymmetric instability in slowly swirling jet flows. Phys. Fluids A 5 (1993), 3122–3135.

    Article  MATH  Google Scholar 

  25. Panda J. & McLaughlin, D. K.: Experiments on the instabilities of a swirling jet. Phys. Fluids 6 (1994), 263–276.

    Article  Google Scholar 

  26. Khorami, M. R. & Triveli, P.: The viscous stability analysis of Long’s vortex. Phys. Fluids 6 (1994), 2623–2630.

    Article  Google Scholar 

  27. Gelfgat, A.Yu., Bar-Yoseph, P.Z. & Solan, A.: Stability of confined swirling flow with and without vortex breakdown. J. Fluid Mech. 311 (1996), 1–36.

    Article  MathSciNet  MATH  Google Scholar 

  28. Trigub, V.N.: The problem of breakdown of a vortex line, PMM USSR 49 (1985), 166–171.

    MATH  Google Scholar 

  29. Buntine, J.D. & Saffman, P.G.: Inviscid swirling flows and vortex breakdown, Proc. R. Soc. Lond. A 448 (1995), 1–15.

    Article  Google Scholar 

  30. Goldshtik, M. & Hussain, F.: The nature of vortex breakdown, Phys. Fluids 9 (1997), 263–265.

    Article  Google Scholar 

  31. Wang, S. & Rusak, Z.: The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown, J. Fluid Mech. (1997), 340, 177–223.

    Article  MathSciNet  MATH  Google Scholar 

  32. Beran, P. S. & Culick, F. E. C.: The role of non-uniqueness in the development of vortex breakdown in tubes, J. Fluid Mech. 242 (1992), 491–527.

    Article  MathSciNet  MATH  Google Scholar 

  33. Lopez, J. M. On the bifurcation structure of axisymmetric vortex breakdown in a constricted pipe, Phys. Fluids 6 (1994), 3683–3693.

    Article  MathSciNet  MATH  Google Scholar 

  34. Escudier, M. P. Observations of the flow produced in a cylindrical container by a rotating endwall. Experiments in Fluids 2 (1984), 189–196.

    Article  Google Scholar 

  35. Goldshtik, M.A. & Shtern, V.N.: Collapse in conical swirling flows, J. Fluid Mech. 218 (1990), 483–508.

    Article  MathSciNet  MATH  Google Scholar 

  36. Shtern, V. & Hussain F.: Hysteresis in swirling jets, J. Fluid Mech. 309 (1996), 1–44.

    Article  MathSciNet  MATH  Google Scholar 

  37. Long, R.R.: A vortex in an infinite fluid, J. Fluid Mech. 11 (1961), 611–623.

    Article  MathSciNet  MATH  Google Scholar 

  38. Taylor, G.I.: The boundary layer in the converging nozzle of a swirl atomizer, Quart. J. Mech. Appl. Math., 3 (1950), 129–139.

    Article  MathSciNet  MATH  Google Scholar 

  39. Goldshtik, M. A.: A paradoxical solution of the Navier-Stokes equations, J. Appl. Math. Mech. 24 (1960), 913–929.

    Article  Google Scholar 

  40. Serrin, J.: The swirling vortex. Phil. Trans. R. Soc. London Ser. A 271 (1972), 325–360.

    Article  MATH  Google Scholar 

  41. Schlichting, H.: Boundary-Layer Theory, McGrow-Hill N.Y., 1979.

    MATH  Google Scholar 

  42. Squire, H. B.: The growth of vortex in turbulent flow“, Aero. Quart. 16 (1965), 302–306.

    Google Scholar 

  43. Govindaraju, S. P. & Saffman, P. G.: Flow in a turbulent trailing vortex, Phys. Fluids 14 (1971), 2074–2080.

    Article  Google Scholar 

  44. Albring, W.: Elementarvorrgänge, fluider Wirbelbewegungen, Akademie-Verlag, Berlin, 1981.

    Google Scholar 

  45. Goldshtik, M.A. & Shtern, V.N.: Conical flows of fluid with variable viscosity, Proc. Roy. Soc. London, 419 A (1988), 91–106.

    MathSciNet  Google Scholar 

  46. Shtern, V., Herrada, M. & Hussain, F.: A model of turbulent vortex breakdown, AIAA pap. 97–1842.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Shtern, V., Hussain, F. (1998). Vortex Breakdown as a Catastrophe. In: Krause, E., Gersten, K. (eds) IUTAM Symposium on Dynamics of Slender Vortices. Fluid Mechanics and Its Applications, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5042-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5042-2_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6117-9

  • Online ISBN: 978-94-011-5042-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics