Skip to main content

Instabilities and Vortex Breakdown in Swirling Jets and Wakes

  • Conference paper

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 44))

Abstract

The convective/absolute nature of the instability is determined for two distinct families of swirling wake/jet flows: the Batchelor vortex with external axial flow and the Rankine vortex with plug-flow velocity profile. It is demonstrated that, even in the absence of external axial counterflow, wakes and jets may exhibit a transition to absolute instability for sufficiently large swirl. Distinct transitional helical modes are found for wakes and jets and the transitional swirl value for the Rankine vortex model is consistent with observed values for vortex breakdown onset. An experimental study of vortex breakdown in swirling jets reveals the existence of four distinct breakdown states (bubble, cone, spiral bubble, spiral cone) above a critical swirl value S c ≈ 1.3 – 1.4. This threshold can be predicted from a simple inviscid criterion based on the existence of a stagnation point within the flow. Extensive hysteretic behaviour prevails close to the critical swirl value for breakdown onset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delbende, I., Chomaz J.-M. & Huerre P. Absolute/convective instabilities in the Batchelor vortex: a numerical study of the linear impulse response. J. Fluid Mech. (in press).

    Google Scholar 

  2. Olendraru, C., Sellier, A., Rossi, M. & Huerre, P. Absolute/convective instability of the Batchelor vortex. C. R. Acad. Sci. Paris 323 (1996), IIb, 153–159.

    MATH  Google Scholar 

  3. Loiseleux, T., Chomaz J.-M. & Huerre P. The effect of swirl on jets and wakes: linear instability of the Rankine vortex with axial flow. Phys. Fluids (in press).

    Google Scholar 

  4. Billant, P., Chomaz J.-M. & Huerre P. Experimental study of vortex breakdown in swirling jets. Submitted to J. Fluid Mech.

    Google Scholar 

  5. Huerre, P. & Monkewitz, P. A. Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1990), 473–537.

    Article  MathSciNet  Google Scholar 

  6. Benjamin, T. B. Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14 (1962), 529–551.

    Article  MathSciNet  Google Scholar 

  7. Hall, M.G. Vortex breakdown. Annu. Rev. Fluid Mech. 4 (1972), 195–217.

    Article  Google Scholar 

  8. Leibovich, S. The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10 (1978), 221–246.

    Article  Google Scholar 

  9. Escudier, M. P. Vortex breakdown: observations and explanations. Prog. Aerospace Sci. 25 (1988), 189–229.

    Article  Google Scholar 

  10. Althaus, W., Brücker, C. & Weimer, M. Breakdown of slender vortices. In: Green S. (ed) Fluid Vortices, Kluwer Academic Pub., Norwell, MA, 373–426, 1995.

    Chapter  Google Scholar 

  11. Batchelor, G. K. Axial flow in trailing line vortices. J. Fluid Mech. 20 (1964), 645–658.

    Article  MathSciNet  MATH  Google Scholar 

  12. Howard, L. N. & Gupta, A. S. On the hydrodynamic and hydromagnetic stability of swirling flows. J. Fluid Mech. 14 (1962), 463–476.

    Article  MathSciNet  MATH  Google Scholar 

  13. Briggs, R.J. Electron-Stream Interaction with Plasmas. MIT Press, Cambridge, Mass, 1964.

    Google Scholar 

  14. Bers, A. Space-time evolution of plasma instabilities -absolute and convective. In: Rosenbluth M.N. & Sagdeev R.Z. (eds) Handbook of Plasma Physics, North-Holland, Amsterdam, 451–517, 1983.

    Google Scholar 

  15. Krishnamoorthy V. Vortex breakdown and measurements of pressure fluctuations over slender wings. Ph.D thesis, Southampton University, 1966.

    Google Scholar 

  16. Batchelor G. K. & Gill A. E. Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14, (1962) 529–551.

    Article  MathSciNet  MATH  Google Scholar 

  17. Spall, R.E., Gatsky, T.B. & Grosch C.E. A criterion for vortex breakdown. Phys. Fluids. 30 (1987), 3434–3440.

    Article  Google Scholar 

  18. Sarpkaya, T. On stationary and travelling vortex breakdowns. J. Fluid Mech. 45 (1971), 545–559.

    Article  Google Scholar 

  19. Faler, J.H. & Leibovich, S. Disrupted states of vortex flow and vortex breakdown. Phys. Fluids 20 (1977), 1385–1400.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Billant, P. et al. (1998). Instabilities and Vortex Breakdown in Swirling Jets and Wakes. In: Krause, E., Gersten, K. (eds) IUTAM Symposium on Dynamics of Slender Vortices. Fluid Mechanics and Its Applications, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5042-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5042-2_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6117-9

  • Online ISBN: 978-94-011-5042-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics