Skip to main content

Stability of Stretched Vortices in a Strain Field

  • Conference paper
IUTAM Symposium on Dynamics of Slender Vortices

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 44))

  • 436 Accesses

Abstract

The linear stability of an arbitrarily stretched Gaussian vortex is addressed when the vortex of circulation Г and radius δ is subjected to an additional strain field of rate s perpendicular to the vorticity axis. The resulting nonaxisymmetric vortex is analysed in the limit of large Reynolds number R Г = Г/υ and small strain s ≪ Г/δ 2. The helical Kelvin wave resonance mechanism described by Moore & Saffman (1975) is shown to be active. Coupled equations for the Kelvin waves amplitudes are obtained, describing the resonance in presence of diffusion and stretching. The main effect of diffusion and stretching is shown to be stabilizing by limiting in time the resonance. The maximum gain of amplitude of the resonant Kelvin waves is computed in terms of the rescaled strain and stretching rates \( s* = s\sqrt {{R_\Gamma }} {\delta ^2}/\Gamma \) and γ* = γR Г δ 2/Г. The result leads to explicit sufficient instability conditions which could explain various dynamical behaviors of vortex filaments in turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arendt, S., Fritts, D. C. & Andreassen, Ø. 1997 Kelvin twist waves in the transition to turbulence. Submitted to Eur. J. Mech.

    Google Scholar 

  • Bayly, B. J. 1986 Three-dimensional Instability of Elliptical Flow. Phys. Rev. Lett., 57, 2160–63.

    Article  MathSciNet  Google Scholar 

  • Cabot, O., Douady, S. & Couder, Y. 1995 Characterization of the low pressure filaments in three-dimensional turbulent shear flow. Phys. Fluids, 7 (3), 630–646.

    Article  Google Scholar 

  • Jimenez, J., Moffatt, H. K. & Vasco, C. 1996 The structure of the vortices in freely decaying two dimensional turbulence. J. Fluid Mech., 313, 209–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Landman, M. J. & Saffman, P. G. 1987 The three-dimensional instability of strained vortices in a viscous fluid. Phys. Fluids, 30 (8), 2339–2342.

    Article  Google Scholar 

  • Le Dizès, S., Rossi, M. & Moffatt, H. K. 1996 On the three-dimensional instability of elliptical vortex subjected to stretching. Phys. Fluids, 8 (8), 2084–2090.

    Article  MathSciNet  MATH  Google Scholar 

  • Leweke, T. & Williamson, C. H. K. 1997 Short wavelength instability of a counter-rotating vortex pair. Submitted to J. Fluid Mech.

    Google Scholar 

  • Moffatt, H. K., Kida, S. & Ohkitani, K. 1994 Stretched vortices -the sinews of turbulence; large-Reynolds-number asymptotics. J. Fluid Mech., 259, 241–264.

    Article  MathSciNet  Google Scholar 

  • Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Load. A., 346, 413–425.

    Article  MathSciNet  MATH  Google Scholar 

  • Pierrehumbert, R. T. 1986 Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett., 57, 2157–60.

    Article  Google Scholar 

  • Robinson, A. C. & Saffman, P. G. 1984 Stability and structure of stretched vortices. Stud. Appl. Math., 70, 163–181.

    MathSciNet  MATH  Google Scholar 

  • Rossi, M. & Le Dizès, S. 1997 Three-dimensional stability spectrum of stretched vortices. Phys. Rev. Lett., 78, 2567–2569.

    Article  Google Scholar 

  • Ting, L. & Tung, C. 1965 Motion and decay of a vortex in a nonuniform stream. Phys. Fluids, 8 (6), 1039–1051.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsai, C.-Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech., 73 (4), 721–733.

    Article  MATH  Google Scholar 

  • Van Dyke, M. 1975 Perturbation method in fluid mechanics. Stanford: The Parabolic Press.

    Google Scholar 

  • Waleffe, F. 1990 On the three-dimensional instability of strained vortices. Phys. Fluids A, 2 (1), 76–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Widnall, S. E., Bliss, D. & Tsai, C.-Y. 1974 The instability of short waves on a vortex ring. J. Fluid Mech., 66 (1), 35–47.

    Article  MathSciNet  MATH  Google Scholar 

  • Williamson, C. H. K. 1996 Three-dimensional wake transition. J. Fluid Mech., 328, 345–407.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Le Dizès, S., Eloy, C. (1998). Stability of Stretched Vortices in a Strain Field. In: Krause, E., Gersten, K. (eds) IUTAM Symposium on Dynamics of Slender Vortices. Fluid Mechanics and Its Applications, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5042-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5042-2_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6117-9

  • Online ISBN: 978-94-011-5042-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics