Skip to main content

Motion of a Thin Vortex Ring in a Viscous Fluid: Higher-Order Asymptotics

  • Conference paper
IUTAM Symposium on Dynamics of Slender Vortices

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 44))

  • 437 Accesses

Abstract

The motion of an axisymmetric vortex ring of small cross-section in a viscous incompressible fluid is investigated using the method of matched asymptotic expansions. A general formula for the ring speed is obtained up to third order in є = δ/R 0 (= (v/Г)1/2), the ratio of core to curvature radii, which takes account of the influence of the self-induced strain. Here Г is the circulation and v is the kinematic viscosity of fluid. It is pointed out that the dipole distributed along the centerline of the ring plays a vital role in its movement. Its strength needs be specified at the initial instant in order to remove the indeterminacy of the theory. A new asymptotic development of the Biot-Savart law enables us to calculate the non-local induction velocity at O(є 3)from the dipole. In a special case, we recover Dyson’s inviscid formula (1893). It is demonstrated that the viscosity acts, at O(є 3), to expand the radius of the loop consisting of the stagnation points in the core, when viewed from a certain comoving frame.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Callegari, A. J. and Ting, L. (1978) Motion of a curved vortex filament with decaying vortical core and axial velocity, SIAM J. Appl. Maths 35, pp. 148–175.

    Article  MathSciNet  MATH  Google Scholar 

  • Dyson, F. W. (1893) The potential of an anchor ring — part II, Phil. Trans. Roy. Soc. Lond. A 184, pp. 1041–1106.

    Article  Google Scholar 

  • Fraenkel, L. E. (1972) Examples of steady vortex rings of small cross-section in an ideal fluid, J. Fluid Mech. 51, pp. 119–135.

    Article  MATH  Google Scholar 

  • Fukumoto, Y. and Miyazaki, T. (1991) Three-dimensional distortions of a vortex filament with axial velocity, J. Fluid Mech. 222, pp. 369–416.

    Article  MathSciNet  MATH  Google Scholar 

  • Gidas, B., Ni, W.-M., and Nirenberg, L. (1979) Symmetry and related properties via the maximum principle, Commun. Math. Phys. 68, pp. 209–243.

    Article  MathSciNet  MATH  Google Scholar 

  • Hosokawa, I. and Yamamoto, K. (1989) Fine structure of a directly simulated isotropic turbulence, J. Phys. Soc. Japan 59, pp. 401–404.

    Google Scholar 

  • Jiménez, J., Moffatt, H. K., and Vasco, C. (1996) The structure of vortices in freely decaying two-dimensional turbulence, J. Fluid Mech. 313, pp. 209–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Kerr, R. M. (1985) Higher-order derivative correlation and the alignment of small-scale structure in isotropic turbulence, J. Fluid Mech. 153, pp. 31–58.

    Article  MATH  Google Scholar 

  • Kida, S. and Ohkitani, K. (1992) Spatiotemporal intermittency and instability of a forced turbulence, Phys. Fluids A 4, pp. 1018–1027.

    Article  MATH  Google Scholar 

  • Klein, R. and Knio, O. M. (1995) Asymptotic vorticity structure and numerical simulation of slender vortex filaments, J. Fluid Mech. 284, pp. 275–321.

    Article  MathSciNet  MATH  Google Scholar 

  • Klein, R. and Majda, A. J. (1991) Self-stretching of a perturbed vortex filament. I. The asymptotic equation for deviations from a straight line, Physica D 49, pp. 323–352.

    Article  MathSciNet  MATH  Google Scholar 

  • Moffatt, H. K., Kida, S., and Ohkitani, K. (1994) Stretched vortices — the sinews of turbulence; large-Reynolds-number asymptotics, J. Fluid Mech. 259, pp. 241–264.

    Article  MathSciNet  Google Scholar 

  • Moore, D. W. and Saffman, P. G. (1972) The motion of a vortex filament with axial flow, Phil. Trans. R. Soc. Lond. A 272, pp. 403–429.

    Article  MATH  Google Scholar 

  • Saffman, P. G. (1970) The velocity of viscous vortex rings, Stud. Appl. Math. 49, pp. 371–380.

    MATH  Google Scholar 

  • Siggia, E. D. (1981) Numerical study of small scale intermittency in three-dimensional turbulence, J. Fluid Mech. 107, pp. 375–406.

    Article  MATH  Google Scholar 

  • Tung, C. and Ting, L. (1967) Motion and decay of a vortex ring, Phys. Fluids 10, pp. 901–910.

    Article  Google Scholar 

  • Widnall, S. E., Bliss, D. B., and Zalay, A. (1971) Theoretical and experimental study of the stability of a vortex pair, In Aircraft Wake Turbulence and its Detection (eds, Olsen, Goldberg, Rogers ), Plenum, pp. 305–338.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Fukumoto, Y., Moffatt, H.K. (1998). Motion of a Thin Vortex Ring in a Viscous Fluid: Higher-Order Asymptotics. In: Krause, E., Gersten, K. (eds) IUTAM Symposium on Dynamics of Slender Vortices. Fluid Mechanics and Its Applications, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5042-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5042-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6117-9

  • Online ISBN: 978-94-011-5042-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics