Skip to main content

Large-Eddy Simulations of Longitudinal Vortices in Shear Flows

  • Conference paper
IUTAM Symposium on Dynamics of Slender Vortices

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 44))

  • 437 Accesses

Abstract

The formation of three-dimensional vortices in mixing layers and boundary layers is investigated in Large-Eddy Simulation, with the aid of the subgrid-scale models presented in (Lesieur and Métais, 1996, Ann. Rev. Fluid Mech., 28, and Lesieur, 1997, Turbulence in fluids, third updated and revised edition). In mixing layers perturbed upstream or initially by small-amplitude random perturbations, two types of flow patterns are obtained depending on the level of three-dimensionality of the perturbations and the spanwise size of the domain. For forcing amplitudes of the order of 1% in turbulent intensity, the natural tendency is the emergence of oblique subharmonic modes yielding the formation of highly-three-dimensional vortex lattices, as in the experiments of Chandrsuda, Mehta, Weir and Bradshaw, 1978, J. Fluid Mech. 85). This trend can be partially inhibitted by taking narrower domains, and sometimes just by making the perturbations more two-dimensional. In this case, a more “canonical” flow pattern is obtained, with quasi-two-dimensional billows undergoing successive pairings while stretching, in between each other, streamwise vortices that form in a succession of stages involving local roll-up and pairing, as conjectured by Lin and Corcos (1984, J. Fluid Mech., 141). The LES of the transition of a spatially-growing boundary layer is also shown, featuring the almost-simultaneous emergence of staggered Λ-vortices and streamwise streaks. The connection between these results and different stability analyses is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartello, P., 1993, private communications.

    Google Scholar 

  • Benney, D.J. and Lin, C.C., 1960, On the secondary motion induced by oscillations in a shear flow. Phys. Fluids, 3 656–657.

    Article  Google Scholar 

  • Bernal, L.P., Roshko, A., 1986, Streamwise vortex structure in plane mixing layer. J. Fluid Mech., 170, 499–525.

    Article  Google Scholar 

  • Browand, F.K., Ho, C.M., 1983, The mixing layer: an exemple of quasi two-dimensional turbulence, Special issue on two-dimensional turbulence, J. Theo. and Appl. Mech., R. Moreau ed., 99–120.

    Google Scholar 

  • Browand, F., Latigo, B.A., 1979, Growth of the two-dimensional mixing layer from a turbulent and non-turbulent boundary layer, Phys. Fluids, 22, 1011–1019.

    Article  Google Scholar 

  • Chandrsuda, C., Mehta, R.D., Weir, A.D., Bradshaw, P., 1978, Effect of free-stream turbulence on large structure in turbulent mixing layers, J. Fluid Mech., 85, 693–704.

    Article  Google Scholar 

  • Collins, S.S., Lele, S.K., Moser, R.D., Rogers, M.M., 1994, The evolution of a plane mixing layer with spanwise nonuniform forcing, Phys. Fluids, 6, 381.

    Article  Google Scholar 

  • Comte, P., Lesieur, M., Fouillet, Y., 1989, Coherent structures of mixing layers in large-eddy simulation, In Topological Fluid Dynamic, H.K. Moffatt, A. Tsinober (eds.). Cambridge University Press, 649–658.

    Google Scholar 

  • Comte, P., Lesieur, M., Lamballais, E., 1992, Small-scale stirring of vorticity and a passive scalar in a 3D temporal mixing layer, Phys. Fluids A, 4, 2761–2778.

    Article  Google Scholar 

  • Comte, P., Ducros, F., Silvestrini, J.H., David, E., Lamballais, E., Métais, O., Lesieur, M., 1994, Simulation des grandes échelles d’écoulements transitionnels, 74th AGARD Fluid Dynamics Panel Meeting, Crete, p. 14.

    Google Scholar 

  • Craik, A.D.D., 1971, Nonlinear resonant instability in boundary layers. J. Fluid Mech., 50, 393–413.

    Article  MATH  Google Scholar 

  • Comte, P., David, E. and Lesieur, M., 1997, Un formalisme pour la simulation des grandes échelles d’écoulements compressibles, Preprint LEGI, for submission to C.R. Acad. Sci. Paris.

    Google Scholar 

  • Dallard, T. and Browand, F.K., 1993, The growth of large scales at defect sites in the plane mixing layer, J. Fluid Mech., 247, 339–368.

    Article  MATH  Google Scholar 

  • David, E., 1993, Modélisation des écoulements compressibles et hypersoniques: une approche instationnaire. Thèse de l’ Institut National Polytechnique de Grenoble.

    Google Scholar 

  • Delcayre, F., 1997, Topology of coherent vortices in the reattachment region of a backward-facing step. In Turbulent Shear Flows 11, Grenoble.

    Google Scholar 

  • Dubief, Y. and Comte, P., 1997, Large-Eddy Simulation of a boundary layer flow passing over a groove. In Turbulent Shear Flows 11, Grenoble.

    Google Scholar 

  • Ducros, F., 1995, Simulations numériques directes et des grandes échelles de couches limites compressibles. Thèse de l’ Institut National Polytechnique de Grenoble.

    Google Scholar 

  • Ducros, F., Comte, P., Lesieur, M., 1996, Large-eddy simulation of transition to turbulence in a boundary-layer developing spatially over a flat plate, J. Fluid Mech., 326 1–36.

    Article  MATH  Google Scholar 

  • Gonze, M.A., 1993, Simulation numérique des sillages en transition à la turbulence, Thèse de l’Institut National Polytechnique de Grenoble.

    Google Scholar 

  • Herbert, T. and Morkovin, M., 1980, Dialogue on bridging some gaps in stability and transition research. In Laminar-Turbulent Transition, ed. R. Eppler, H. Fasel, 47–72, Springer Verlag, Berlin.

    Chapter  Google Scholar 

  • Herbert, T., 1988, Secondary instability of boundary layers. Ann. Rev. Fluid Mech., 20, 487–526.

    Article  Google Scholar 

  • Huang, L., Ho, C.M., 1990, Small scale transition in a plane mixing layer, J. Fluid Mech., 210, 475–500.

    Article  Google Scholar 

  • Kelly, R.E., 1967, On the stability of an inviscid shear layer which is periodic in space and time. J. Fluid Mech., 27, 657–689.

    Article  MATH  Google Scholar 

  • Klebanoff, P.S., Tidstrom, K.D., Sargent, L.M., 1962, The three-dimensional nature of turbulent boundary layer instability. J. Fluid Mech., 12, 1–34.

    Article  MATH  Google Scholar 

  • Konrad, J.H., 1976, An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions. Ph.D. Thesis, California Institute of Technology.

    Google Scholar 

  • Lasheras, J., Choi, H., 1988, Three-dimensional instability of a plane free shear layer: an experimental study of the formation and evolution of streamwise vortices, J. Fluid Mech., 189 53–86.

    Article  Google Scholar 

  • Lamballais, E., 1995, Simulations numériques de la turbulence dans un canal plan tournant. Thèse de l’Institut National Polytechnique de Grenoble.

    Google Scholar 

  • Lesieur, M., 1997, Turbulence in fluids, third edition, Kluwer Academic Publishers.

    Google Scholar 

  • Lesieur M., Métais O., 1996, New trends in large-eddy simulations of turbulence, Ann. Rev. Fluid Mech., 28 45–82.

    Article  Google Scholar 

  • Lesieur, M., Staquet, C., Le Roy, P., Comte, P., 1988, The mixing layer and its coherence examined from the point of view of two-dimensional turbulence, J. Fluid Mech., 192 511–534.

    Article  MathSciNet  Google Scholar 

  • Leslie, D.C., Quarini, G.L., 1979, The application of turbulence theory to the formulation of subgrid modelling procedures, J. Fluid Mech., 91 65–91.

    Article  MATH  Google Scholar 

  • Lin, S.J., Corcos, G.M., 1984, The mixing layer: deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices, J. Fluid Mech., 141, 139–178.

    Article  MATH  Google Scholar 

  • Lund, T. S., Wu, X., and Squires, K. D., 1996, ”On the Generation of Turbulent Inflow Conditions for Boundary Layer Simulations”, Annual Research Briefs, Center for Turbulence Research, pp. 287–295.

    Google Scholar 

  • Mallier, R, Maslowe, S.A., 1994, Fully coupled resonant-triad interactions in a free shear layer, J. Fluid Mech., 278 101–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Métais, O., Lesieur, M., 1992, Spectral large-eddy simulations of isotropic and stably-stratified turbulence, J. Fluid Mech, 239 157–194.

    Article  MathSciNet  MATH  Google Scholar 

  • Metcalfe, R.W., Orszag, S.A., Brachet, M.E., Menon, S., Riley, J., 1987, Secondary instability of a temporally growing mixing layer, J. Fluid Mech., 184, 207–234.

    Article  MATH  Google Scholar 

  • Monkewitz, P.A., 1988, Subharmonic resonance, pairing and schredding in the mixing layer. J. Fluid Mech., 188, 223–252.

    Article  MATH  Google Scholar 

  • Neu, J.C., 1984, The dynamics of stretched vortices. J. Fluid Mech., 143, 253–276.

    Article  MATH  Google Scholar 

  • Nygaard, K., Glezer, A., 1991, Evolution of streamwise vortices and generation of small-scale motion in a plane mixing layer, J. Fluid Mech., 231 257–301.

    Article  Google Scholar 

  • Nygaard, K., Glezer, A., 1994, The effect of phase variations and cross-shear on vortical structures in a plane mixing layer, J. Fluid Mech., 276 21–59.

    Article  Google Scholar 

  • Orlansky, I., 1976, A simple boundary condition for unbounded hyperbolic flows, J. Comp. Phys., 21 251–269.

    Article  Google Scholar 

  • Orszag, S.A., Patera, A.T., 1983, Secondary instability of wall-bounded shear flows, J. Fluid Mech., 128, pp. 347–385.

    Article  MATH  Google Scholar 

  • Pierrehumbert, R.T., Widnall, S.E., 1982, The two-and three-dimensional instabilities of a spatially periodic shear layer, J. Fluid Mech., 114, 59–82.

    Article  MATH  Google Scholar 

  • Schoppa, W., Hussain, F., Metcalfe, R., 1995, A new mechanism of small-scale transition in a plane mixing layer: core dynamics of spanwise vortices, J. Fluid Mech., 298 23–80.

    Article  MathSciNet  MATH  Google Scholar 

  • Silvestrini, J., 1996, Simulation des grandes échelles des zones de mélange: application à la propulsion solide des lanceurs spatiaux. Thèse de l’ Institut National Polytechnique de Grenoble.

    Google Scholar 

  • Urbin, G. and Métais, O., in Turbulent shear flows 11, Grenoble.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Comte, P., Lesieur, M. (1998). Large-Eddy Simulations of Longitudinal Vortices in Shear Flows. In: Krause, E., Gersten, K. (eds) IUTAM Symposium on Dynamics of Slender Vortices. Fluid Mechanics and Its Applications, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5042-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5042-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6117-9

  • Online ISBN: 978-94-011-5042-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics