Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 94))

Abstract

We translate the Dirac equation into the Clifford algebra of physical space. We study the second-order equation, the relativistic invariance, the gauge invariance, the Lagrangian density and the tensors of the Dirac theory. Next we completely solve, by separation of variables, the Dirac equation for the hydrogen atom. The classical solutions have vanishing invariants and we calculate some linear combinations of the classical solutions with nonvanishing invariants. These solutions may be the linear approximations for a nonlinear equation previously studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dirac P. A. M. (1928) Proc. Roy. Soc. (London) 117, 610.

    Article  MATH  Google Scholar 

  2. Daviau C. Sur l’équation de Dirac dans l’algèbre de Pauli Ann. Fond. Louisde Broglie, to be published.

    Google Scholar 

  3. Hestenes D. (1966) (1987) (1992) Space-Time Algebra, Gordon & Breach, New York.

    MATH  Google Scholar 

  4. Hestenes D. (1967) Real Spinor Fields, J. Math. Phys. 8, 4.

    Google Scholar 

  5. Hestenes D. (1973) Local observables in the Dirac theory, J. Math. Phys 14, 7.

    Article  Google Scholar 

  6. Hestenes D. (1974) Proper particle mechanics, J. Math. Phys. 15, 10.

    Google Scholar 

  7. Hestenes D. (1974) Proper dynamics of a rigid point particle, J. Math. Phys. 15, 10.

    Google Scholar 

  8. Hestenes D. (1975) Observables, operators, and complex numbers in the Dirac theory, J. Math. Phys. 16, 3.

    Article  Google Scholar 

  9. Hestenes D. (1986) A unified language for Mathematics and Physics, in JSR Chisholm and AK Common Clifford algebrasand their applications in Mathematics and Physics, Reidel, Dordrecht.

    Google Scholar 

  10. Bacry H. (1967) Leçons sur la théorie des groupes et les symétries des particulesélémentaires, Gordon & Breach, Paris & New York.

    Google Scholar 

  11. Lochak G. (1983) (1984) Sur un monopôle de masse nulle décrit par l’équation de Dirac etsur une équation générale non linéaire qui contient des monopôles de spin1/2, Ann. Fond. Louis de Broglie 8, 4 and 9, 1.

    Google Scholar 

  12. Lochak G. (1985) The symmetry between electricity and magnetism and the wave equation of a spin 1/2 magnetic monopole, in Proceedings of the 4-th International Seminar on the Mathematical Theory of dynamical systems and Microphysics, CISM.

    Google Scholar 

  13. Lochak G. (1985) Wave equation for a magnetic monopole, Int. J. of Th. Phys. 24, 10.

    MathSciNet  Google Scholar 

  14. Lochak G. (1992) Un monopôle magnétique dans le champ de Dirac (Etats magnétiques du champ de Majorana), Ann. Fond. Louis de Broglie 17, 2.

    Google Scholar 

  15. Daviau C. and Lochak G. (1991) Sur un modèle d’équation spinorielle non linéaire, Ann. Fond. Louis de Broglie 16, 1.

    Google Scholar 

  16. Daviau C. (1993) Equation de Dirac non linéaire, Thèse de doctorat, Universitéde Nantes.

    Google Scholar 

  17. Daviau C. (1993) Linear and Nonlinear Dirac Equation, Found, of Phys. 23, 11.

    Article  MathSciNet  Google Scholar 

  18. Daviau C. (1994) Remarques sur une équation de Dirac non linéaire, Ann. Fond. Louis de Broglie 19, 4.

    MathSciNet  Google Scholar 

  19. Daviau C. (1995) Sur la résolution de l’équation de Dirac pour l’atome d’hydrogène, Ann. Fond. Louis de Broglie 20, 1.

    MathSciNet  Google Scholar 

  20. Daviau C. (1995) Solutions of the Dirac equation and of a nonlinear Dirac equations for the Hydrogen Atom, Int. Conference on the Theory of the Electron, Mexico.

    Google Scholar 

  21. Jakobi G. and Lochak G. (1956) Introduction des paramètres relativistes de Cayley-Kleindans la représentation hydrodynamique de l’équation de Dirac, Comptes Rendus de l’Académie des Sciences, t. 243, 234–237, 357–360.

    MathSciNet  Google Scholar 

  22. Boudet R. (1988) La géométrie des particules du groupe SU(2) et l’algèbreréelle d’espace-temps, Ann. Fond. Louis de Broglie 13, 1.

    Google Scholar 

  23. Boudet R. (1993) Le corpuscule de Louis de Broglie et la géométrie de l’espace-temps, Courants, Amers, Ecueils en microphysique, Ann. Fond. Louis de Broglie.

    Google Scholar 

  24. Boudet R. (1995) The Takabayasi moving Frame, from a Potential to the Z Boson, in S. Jeffers and J.P. Vigier ThePresent Status of the Quantum Theory of the Light, Kluwer Dordrecht.

    Google Scholar 

  25. Krüger H. (1991) New solutions of the Dirac equation for central fields, in D. Hestenes and A. Weingartshofer The Electron, Kluwer Academic Publishers, 49–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Daviau, C. (1998). Dirac Equation in the Clifford Algebra of Space. In: Dietrich, V., Habetha, K., Jank, G. (eds) Clifford Algebras and Their Application in Mathematical Physics. Fundamental Theories of Physics, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5036-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5036-1_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6114-8

  • Online ISBN: 978-94-011-5036-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics