Advertisement

We must Choose the Simplest Physical Theory: Levin-Li-Vitányi Theorem and its Potential Physical Applications

  • D. Fox
  • M. Schmidt
  • M. Koshelev
  • V. Kreinovich
  • L. Longpré
  • J. Kuhn
Conference paper
Part of the Fundamental Theories of Physics book series (FTPH, volume 98)

Abstract

If several physical theories are consistent with the same experimental data, which theory should we choose? Physicists often choose the simplest theory; this principle (explicitly formulated by Occam) is one of the basic principles of physical reasoning. However, until recently, this principle was mainly a heuristic because it uses the informal notion of simplicity.

With the explicit notion of simplicity coming from the Algorithmic Information theory, it is possible not only to formalize this principle in a way that is consistent with its traditional usage in physics, but also to prove this principle, or, to be more precise, deduce it from the fundamentals of mathematical statistics as the choice corresponding to the least informative prior measure. Potential physical applications of this formalization (due to Li and Vitányi) are presented.

In particular, we show that, on the qualitative level, most fundamental ideas of physics can be re-formulated as natural steps towards choosing a theory that is the simplest in the above precise sense (although on the intuitive level, it may seem that, e.g., classical physics is easier than quantum physics): in particular, we show that such ideas as Big Bang cosmology, atomism, uncertainty principle, Special Relativity, quark confinement, quantization, symmetry, supersymmetry, etc. can all be justified by this (Bayesian justified) preference for formalized simplicity.

Key words

Kolmogorov complexity Algorithmic Information theory Occam razor Bayesian statistics Fundamental physics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Brink and M. Henneaux, Principles of string theory, Plenum Press, N.Y., 1988.CrossRefGoogle Scholar
  2. 2.
    N. Chater, “Reconciling simplicity and likelihood principles in perceptual organization”, Psychological Reviews, 1996, Vol. 103, pp. 566–581.CrossRefGoogle Scholar
  3. 3.
    A. Einstein, “On the method of theoretical physics”, The Herbert Spencer Lecture delivered at Oxford on June 10, 1933. Reprinted in: A. Einstein, Ideas and opinions, Crown Publishers, N.Y., 1954, pp. 270–276.Google Scholar
  4. 4.
    A. Finkelstein, O. Kosheleva, and V. Kreinovich, “Astrogeometry, error estimation, and other applications of set-valued analysis”, ACM SIGNUM Newsletter, 1996, Vol. 31, No. 4, pp. 3–25.CrossRefGoogle Scholar
  5. 5.
    A. Finkelstein, O. Kosheleva, and V. Kreinovich, “Astrogeometry: towards mathematical foundations”, International Journal of Theoretical Physics, 1997, Vol. 36, No. 4, pp. 1009–1020.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    A. Finkelstein, O. Kosheleva, and V. Kreinovich, “Astrogeometry: geometry explains shapes of celestial bodies”, Geombinatorics, 1997, Vol. VI, No. 4, pp. 125–139.MathSciNetGoogle Scholar
  7. 7.
    A. M. Finkelstein and V. Kreinovich, “Derivation of Einstein’s, Brans-Dicke and other equations from group considerations,” On Relativity Theory. Proceedings of the Sir Arthur Eddington Centenary Symposium, Nagpur India 1984, Vol. 2, Y. Choque-Bruhat and T. M. Karade (eds), World Scientific, Singapore, 1985, pp. 138–146.Google Scholar
  8. 8.
    A. M. Finkelstein, V. Kreinovich, and R. R. Zapatrin, “Fundamental physical equations uniquely determined by their symmetry groups,” Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-N.Y., Vol. 1214, 1986, pp. 159–170.Google Scholar
  9. 9.
    Q. Gao and M. Li, “An application of minimum description length principle to online recognition of handprinted alphanumerals”, In: Proc. 11th Int’s Join Conferences on Artificial Intelligence IJCAI, Morgan Kaufmann, San Mateo, CA, 1989, pp. 843–848.Google Scholar
  10. 10.
    Group theory in physics: proceedings of the international symposium held in honor of Prof. Marcos M o shins ky, Cocoyoc, Morelos, Mexico, 1991, American Institute of Physics, N.Y., 1992.Google Scholar
  11. 11.
    H. A. Keuzenkamp and M. McAleer, “Simplicity, scientific inference, and econometric modelling”, The Economic Journal, 1995, Vol. 105, pp. 1–21.CrossRefGoogle Scholar
  12. 12.
    V. Kreinovich. “Derivation of the Schroedinger equations from scale invariance,” Theoretical and Mathematical Physics, 1976, Vol. 8, No. 3, pp. 282–285.CrossRefGoogle Scholar
  13. 13.
    V. Kreinovich and L. Longpré, “Unreasonable effectiveness of symmetry in physics”, International Journal of Theoretical Physics, 1996, Vol. 35, No. 7, pp. 1549–1555.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    M. Li and P. M. B. Vitányi, “Inductive reasoning and Kolmogorov complexity”, J. Comput. System. Sci., 1992, Vol. 44, No. 2, pp. 343–384.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    M. Li and P. M. B. Vitányi, “Computational machine learning in theory and practice”, In: J. van Leeuwen (ed.), Computer Science Today, Recent Trends and Developments, Springer Lecture Notes in Computer Science, Springer-Verlag, Berlin-Heidelberg-N.Y., 1995, Vol. 1000, pp. 518–535.Google Scholar
  16. 16.
    M. Li and P. M. B. Vitányi, An Introduction to Kolmogorov Complexity and its Applications, Springer-Verlag, N.Y., 1997.zbMATHGoogle Scholar
  17. 17.
    Ch. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman and Co., San Francisco, 1973.Google Scholar
  18. 18.
    P. J. Olver, Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, N.Y., 1995.zbMATHCrossRefGoogle Scholar
  19. 19.
    E. P. D. Pednault, “Some experiments in applying inductive inference principles to surface reconstruction”, In: Proc. 11th International Joint Conferences on Artificial Intelligence IJCAI, Morgan Kaufmann, San Mateo, CA, 1989, pp. 1603–1609.Google Scholar
  20. 20.
    J. J. Rissanen, “Modeling by the shortest data description”, Automatica, 1978, Vol. 14, pp. 465–471.zbMATHCrossRefGoogle Scholar
  21. 21.
    J. J. Rissanen, Stochastic complexity and statistical inquiry, World Scientific, Singapore, 1989.Google Scholar
  22. 22.
    J. J. Rissanen, “Fisher information and stochastic complexity”, IEEE Transactions on Information Theory, 1996, Vol. IT-42, No. 1, pp. 40–47.MathSciNetCrossRefGoogle Scholar
  23. 23.
    I. Rosenthal-Schneider, “Presuppositions and anticipations”, In: P. A. Schlipp (ed.), Albert Einstein: philosopher-scientist, Tbdor Pubi., N.Y., 1951.Google Scholar
  24. 24.
    W. Siegel, Introduction to string field theory, World Scientific, Singapore, 1988.CrossRefGoogle Scholar
  25. 25.
    Symmetries in physics: proceedings of the international symposium held in honor of Prof. Marcos Moshinsky, Cocoyoc, Morelos, Mexico, 1991, Springer-Verlag, Berlin, N.Y., 1992.Google Scholar
  26. 26.
    P. M. B. Vitányi and M. Li, “Ideal MDL and its relation to Bayesianism”, In: D. Dowe, K. Korb, and J. Oliver (eds.), Proc. ISIS: Information, Statistics, and Induction in Science Conference, World Scientific, Singapore, 1996, pp. 282–291.Google Scholar
  27. 27.
    P. M. B. Vitányi and M. Li, Minimum description length induction, Bayesianism, and Kolmogorov complexity, Manuscript, CWI, Amsterdam, 1996.Google Scholar
  28. 28.
    F. J. Yndurain, Quantum chwmodynamics: an introduction to the theory of quarks and gluons, Springer-Verlag, N.Y., 1983.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • D. Fox
    • 1
  • M. Schmidt
    • 1
  • M. Koshelev
    • 1
  • V. Kreinovich
    • 1
  • L. Longpré
    • 1
  • J. Kuhn
    • 2
  1. 1.Department of Computer ScienceUniversity of Texas at El PasoEl PasoUSA
  2. 2.National Solar Observatory/Sacramento ParkSunspotUSA

Personalised recommendations