Advertisement

A Bayesian Approach for the Determination of the Charge Density from Elastic Electron Scattering Data

  • A. Mohammad-Djafari
  • H. G. Miller
Part of the Fundamental Theories of Physics book series (FTPH, volume 98)

Abstract

The problem of the determination of the charge density from limited information about the charge form factor is an ill-posed inverse problem. A Bayesian probabilistic approach to this problem which permits to take into account both errors and prior information about the solution is presented. We will show that many classical methods can be considered as special cases of the proposed approach. We address also the problem of the basis function choice for the discretization and the uncertainty of the solution. Some numerical results for an analytical model are presented to show the performance of the proposed method.

Keywords

Charge Density Maximum Entropy Bayesian Method Less Square Solution Parametric Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Friar and J. W. Negele, Nucl. Phys. A 212, 93 (1973).CrossRefGoogle Scholar
  2. 2.
    B. Dreher et al., Nucl. Phys. A 235, 219 (1974).CrossRefGoogle Scholar
  3. 3.
    J. Heisenberg and H. P. Blok, Ann. Rev. Nucl. Part. Sc. 33, 569 (1983).CrossRefGoogle Scholar
  4. 4.
    D. S. Watkins, Fundamentals of Matrix Computations (Wiley, New York, 1991).zbMATHGoogle Scholar
  5. 5.
    M. E. Grypeos, G. A. Lalazissis, S. E. Massen, and C. P. Panos, J. Phys. G 17, 1093 (1991).CrossRefGoogle Scholar
  6. 6.
    R. E. Kozak, Am. J. Phys. 59, 74 (1991).CrossRefGoogle Scholar
  7. 7.
    R. Anni, G. Co’, and P. Pellegrino, preprint (1994).Google Scholar
  8. 8.
    C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications (Wiley, New York, 1971).Google Scholar
  9. 9.
    J. Baker-Jarvis, J. Math. Phys. 30, 302 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    J. Baker-Jarvis, M. Racine, and J. Alameddine, J. Math. Phys. 30, 1459 (1989).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    N. Canosa, H. G. Miller, A. Piastino and R. Rossignoli, Physica A220, 611 (1995).Google Scholar
  12. 12.
    S. F. Gull and G.J. Daniell, Nature 272, 686 (1978).CrossRefGoogle Scholar
  13. 13.
    H.G. Miller, Y. Tzeng, G.D. Yen, N. Canosa, R. Rossignoli and A. Piastino, to be published.Google Scholar
  14. 14.
    Buck and Macaulay, “Linear inversion by the method of maximum entropy,” in Maximum Entropy and Bayesian Methods 89, (J. Skilling, ed.), Kluwer Academic Publishers, 1990.Google Scholar
  15. 15.
    J. Skilling, “Classical maximum entropy” in Maximum Entropy and Bayesian Methods 89, (J. Skilling, ed.), pp. 45–52, Kluwer Academic Publishers, 1989.Google Scholar
  16. 16.
    A. Mohammad-Djafari, “A full Bayesian approach for inverse problems,” in Maximum Entropy and Bayesian Methods 95, (K. Hanson and R. Silver, ed.), Kluwer Academic Publishers, 1996.Google Scholar
  17. 17.
    D.J.C. MacKay, “Hyperparameters: Optimize or integrate out?” in Maximum Entropy and Bayesian Methods 93, (G. Heidbreder, ed.), pp. 43–59, Kluwer Academic Publishers, 1996.Google Scholar
  18. 18.
    V.A. Macaulay and B. Buck, “A fresh look at model selection in inverse scattering,” in Maximum Entropy and Bayesian Methods 94, (J. Skilling and S. Sibisi ed.), Kluwer Academic Publishers, 1996.Google Scholar
  19. 19.
    A. Mohammad-Djafari and J. Idier, “A scale invariant Bayesian method to solve linear inverse problems”, pp. 121–134. in Maximum Entropy and Bayesian Methods 94, (G. Heidbreder, ed.), Kluwer Academic Publishers, 1996.Google Scholar
  20. 20.
    A. Mohammad-Djafari and J. Idier, “Maximum entropy prior laws of images and estimation of their parameters,” pp. 285–293. in Maximum Entropy and Bayesian Methods 90, (T. Grandy, ed.), Kluwer Academic Publishers, 1991.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • A. Mohammad-Djafari
    • 1
  • H. G. Miller
    • 2
  1. 1.Laboratoire des Signaux et Systèmes (CNRS-ESE-UPS)Gif-sur-YvetteFrance
  2. 2.Department of PhysicsUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations