Skip to main content

Quantum Optics of Atomic Systems Confined in a Dielectric Environment

  • Chapter
Nanoscale Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 348))

Abstract

With the advent of modern technology, new domains of optics and spectroscopy open up, in which metallic or dielectric structures (microspheres, optical fibers, semiconductor microstructures, sharp-pointed needle tips) with a characteristic size of the order of micrometer, or even tens of nanometers, are currently used. The optics of microstructures or nanostructures is a specific domain of optics, since it deals with objects whose size is commensurable or even smaller than the optical wavelength (near-field optics) [1]. The optical properties of atomic systems (or, more generally, bound electronic systems) confined in such an environment are strongly altered with respect to the free-space properties [2,3]; this forms the core of the research field now known as cavity Quantum Electrodynamics (cavity QED [4,5]), which have strong implications in a number of emerging technologies in both Atomic Physics and Solid State Physics like scanning near-field optical microscopy and spectroscopy, near-field fluorescence microscopy, semiconductor microtechnology, microlasers, atom channeling and atom lithography [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pohl D. and Courjon D. (Eds) «Near-field Optics» (NATO ASI Series E 242; Kluwer, Dordrecht 1993)

    Google Scholar 

  2. Ducloy M. and Bloch D. (Eds) « Quantum Optics of Confined Systems » (NATO ASI Series E 314; Kluwer, Dordrecht, 1996)

    Google Scholar 

  3. Rarity J. and Weisbuch C. (Eds) «Microcavities and Photonic Bandgaps: Physics and Applications ».(NATO ASI Series E 324; Kluwer, Dordrecht, 1996)

    Google Scholar 

  4. Haroche S., in « Fundamental Systems in Quantum Optics », Dalibard J., Raimond J.M. and Zinn-Justin J., Eds (North Holland, Amsterdam, 1992), pp 771

    Google Scholar 

  5. Raimond J.M., « Basics of Cavity QED », in Ref [2], pp 1–46

    Google Scholar 

  6. Drexhage K.H., in « Progress in Optics XII », Wolf E., ed. (North Holland, Amsterdam, 1974) pp 163

    Chapter  Google Scholar 

  7. Goy P., Raimond J.M., Gross M. and Haroche S., Phys. Rev. Lett. 59, 1903 (1983);

    Article  ADS  Google Scholar 

  8. Hulet R.G., Hilfer E.S., and Kleppner D., ibid 55, 2137 (1985);

    Google Scholar 

  9. Meschede D., Walther H., and Klein N., ibid 54, 551 (1985);for a general review, see Ref. [5]

    Google Scholar 

  10. Brune M. et al, Phys. Rev. Lett. 77, 4887 (1996)

    Article  ADS  Google Scholar 

  11. Raizen et al, Phys. Rev. Lett. 63, 240 (1989);

    Article  ADS  Google Scholar 

  12. Thomson R.J., Rempe G. and Kimble H.J., ibid, 68, 1132 (1992).

    Google Scholar 

  13. Yablonovitch E, Gmitter T.J. and Bhat R., Phys. Rev. Lett. 61, 2546 (1988);

    Article  ADS  Google Scholar 

  14. Weisbuch C., Nishioka M., Ishikawa A., and Arakawa Y., ibid, 69, 3314 (1992);

    Google Scholar 

  15. Yamamoto Y., in Ref [2], pp 201–281;

    Google Scholar 

  16. Yamamoto Y. and Slusher R.E., Physics Today, 46 (6), 66 (1993).

    Article  Google Scholar 

  17. Braginsky V.B., Gorodetsky M.L. and Ilchenko V.S., Phys. Lett. A137 393 (1989)

    ADS  Google Scholar 

  18. Collot L., Lefevre V., Brune M., Raimond J.M., and Haroche S., Europhys. Lett. 23, 327 (1993).

    Article  ADS  Google Scholar 

  19. Klimov V.V., Ducloy M. and Letokhov V.S., J. Mod. Optics 44, 1081 (1997)

    Article  ADS  Google Scholar 

  20. See e.g. Zangwill A., «Physics at Surfaces» (Cambridge University Press, Cambridge, 1988).

    Book  Google Scholar 

  21. Lennard-Jones J.E., Trans. Faraday Soc., 28 334 (1932).

    Article  Google Scholar 

  22. See, e.g., Jackson J.D. « Classical Electrodynamics » (Wiley, New York, 1975), pp 147–149.

    Google Scholar 

  23. Raskin D. and Kusch P., Phys. Rev., 179 (1969) 172;

    Article  Google Scholar 

  24. Shih A., Raskin D. and Kusch P., Phys. Rev. A 9 (1974) 652 and 1507.

    ADS  Google Scholar 

  25. Anderson A., Haroche S., Hinds E.A., Jhe W. and Meschede D. Phys. Rev. A37 (1988) 3594;

    ADS  Google Scholar 

  26. Sukenik C.I., Boshier M.G., Cho D., Sandoghdar V. and Hinds E.A., Phys. Rev. Lett. 70 (1993) 560.

    Article  ADS  Google Scholar 

  27. Landragin A., et al Phys. Rev. Lett. 77 1464 (1996)

    Article  ADS  Google Scholar 

  28. Feron S., Thèse, Université Paris-Nord (1994)

    Google Scholar 

  29. Oria M., Chevrollier M., Bloch D., Fichet M. and Ducloy M., Europhys. Lett. 14 (1991) 527;

    Article  ADS  Google Scholar 

  30. Chevrollier M., Bloch D., Rahmat G. and Ducloy M., Opt. Lett. 16 (1991) 1879;

    Article  ADS  Google Scholar 

  31. Chevrollier M., Fichet M., Oria M., Rahmat G., Bloch D. and Ducloy M., J. Phys. II (France) 2 (1992) 631, and references therein.

    Article  Google Scholar 

  32. Heinzen D.J., and Feld M.S. Phys. Rev. Lett. 59, 2623 (1987)

    Article  ADS  Google Scholar 

  33. Casimir H.B.G. and Polder D., Phys. Rev. 73 (1948) 360.

    Article  ADS  MATH  Google Scholar 

  34. For a general review, see, e.g., Hinds E.A., in « Advances in Atomic, Molecular and Optical Physics » 28, 237 (1991) and references therein; also Spruch L., Physics Today, 39. 37 (1986);

    Google Scholar 

  35. Tikochinsky Y. and Spruch L., Phys. Rev. A48, 4223 (1993).

    ADS  Google Scholar 

  36. Mavroyannis C., Mol. Phys. 6 (1963) 593;

    Article  ADS  Google Scholar 

  37. Mc Lachlan A.D., Proc. Roy. Soc (London), A271 (1963) 387.

    MathSciNet  ADS  Google Scholar 

  38. Fichet M., Schuller F., Bloch D.and Ducloy M., Phys. Rev. A51, 1553 (1995)

    Google Scholar 

  39. Wylie J.M. and Sipe J.E., Phys. Rev. A 30 (1984) 1185; A 32 (1985) 2030.

    ADS  Google Scholar 

  40. Chance R.R., Prock A. and Silbey R., J. Chem. Phys. 62 (1975) 2245.

    Article  ADS  Google Scholar 

  41. Barnett S.M., Huttner B. and Loudon R., Phys. Rev. Lett. 68, 3698 (1992);

    Article  ADS  Google Scholar 

  42. Barnett S.M., Huttner B. and Loudon R. J. Phys. B29, 3763 (1996);

    ADS  Google Scholar 

  43. Juzeliunas G., Phys. Rev. A55, R 4015 (1997)

    ADS  Google Scholar 

  44. Girard C., Martin O.J.F. and Dereux A., Phys. Rev. Lett. 75 3098 (1995) and references in.

    Article  ADS  Google Scholar 

  45. Sandoghdar V., Sukenik C.I., Hinds E.A. and Haroche S., Phys. Rev. Lett. 68 3432 (1992)

    Article  ADS  Google Scholar 

  46. Wood R.W., Philos. Mag. 18, 187 (1909)

    Article  Google Scholar 

  47. Nienhuis G., Schuller F.and Ducloy M., Phys. Rev. A38 (1988) 5195

    ADS  Google Scholar 

  48. Cojan J.L., Ann. Phys. (France) 9 (1954) 385

    Google Scholar 

  49. Woerdman J.P. and Schuurmans M.F.H., Opt. Commun. 6 248 (1975);

    Article  ADS  Google Scholar 

  50. Schuurmans M.F., J. Phys. (Paris) 37 (1976) 469

    Article  Google Scholar 

  51. Akul’shin A.M., Velichanskii V.L., Zibrov A.S., Nikitin V.V., Sautenkov V.V. Yurkin E.K. and Senkov N.V., Pis’ma Zh. Eksp. Teor. Fiz 36 (1982) 247 [J.E.T.P. Lett. 36 (1982) 303]

    Google Scholar 

  52. Ducloy M. and Fichet M., J. Phys. II (France) 1(1991) 1429

    Article  Google Scholar 

  53. Maki J.J., Malcuit M.S., Sipe J.E. and Boyd R.W., Phys. Rev. Lett. 67 972 (1991);

    Article  ADS  Google Scholar 

  54. Vuletic V., Sautenkov V.A., Zimmermann C. and Hänsch T.W., Opt. Commun. 99 185 (1993);

    Article  ADS  Google Scholar 

  55. Papageorgiou N. et al Laser Physics 4, 392 (1994);

    Google Scholar 

  56. Wang P., Gallagher A. and Cooper J., Phys. Rev. A56 1598 (1997) and references in.

    ADS  Google Scholar 

  57. Vuletic V. et al, Ref [35]

    Google Scholar 

  58. Gorris-Neveux M. et al, Opt. Commun. 134, 85 (1997);

    Article  ADS  Google Scholar 

  59. Wang P. et al Ref [35]

    Google Scholar 

  60. Schuller F., Nienhuis G. and Ducloy M. Phys. Rev. A43, 443 (1991).

    ADS  Google Scholar 

  61. Schuller F., Gorceix O. and Ducloy M. Phys. Rev. A47, 519 (1993)

    ADS  Google Scholar 

  62. Rabi O. Amy-Klein A., Saltiel S. and Ducloy M. Europhysics Letters 25 579 (1994)

    Article  ADS  Google Scholar 

  63. Gorris-Neveux M. et al, Phys. Rev. A54, 3386 (1996)

    ADS  Google Scholar 

  64. Failache H. et al, to be published

    Google Scholar 

  65. Papargeorgiou N. et al, Ann. Physique (France) 20, 611 (1995)

    ADS  Google Scholar 

  66. This surface-induced birefringence is also accompanied by an important anisotropy of the spontaneous emission rate which can be enhanced or inhibited according to the dipole orientation and the nature of the surface: Lukosz W. and Kunz R.E., Opt. Commun 20, 195 (1997);

    Article  ADS  Google Scholar 

  67. Jhe W. et al, Phys. Rev. Lett. 58, 666 (1987).

    Article  ADS  Google Scholar 

  68. Similar TOF studies of inelastic processes in crossed-beam collisions have been performed.See e.g., Robert J., Bocvarski V., Colomb de Daunant I., Vassilev G. and Baudon J., J. Physique (France) 45 225 (1984).

    Article  Google Scholar 

  69. Boustimi M. et al., private comunication.

    Google Scholar 

  70. Levy Y., Zhang Y. and Loulergue J.C., Opt. Commun. 56, 155 (1985);

    Article  ADS  Google Scholar 

  71. Rigneault H. and Monneret S., Phys. Rev. A54, 2356 (1996) and references in; see also Ref [10]

    ADS  Google Scholar 

  72. Knight J.C., Driver H.S.T., Hutcheon R.J., and Robertson G.N., Opt. Lett. 17. 1280 (1992);

    Article  ADS  Google Scholar 

  73. Rippin M.A. and Knight P.L., J. Mod Optics 43 807 (1996) and references therein;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. Nha H. and Jhe W., Phys. Rev. A56, 2213 (1997).

    ADS  Google Scholar 

  75. Nussenzveig H.M. «Diffraction effects in semi-classical scattering» (Cambridge University Press, 1992);

    Book  Google Scholar 

  76. Barber P.W. and Chang R.K. (Eds) «Optical effects associated with small particles» (World Scientific, Singapore, 1988);

    Google Scholar 

  77. Chang RK. and Campillo A.J. (Eds) « Optical processes in micro-cavities » (World Scientific, Singapore, 1996).

    Google Scholar 

  78. Knight J.C., Dubreuil N., Sandoghdar V., Hare J., Lefèvre-Seguin V., Raimond J.M. and Haroche S., Optics Letters 20, 1515 (1995);21 698 (1996).

    Article  ADS  Google Scholar 

  79. A detailed presentation of the ENS work is given by Lefèvre-Seguin V. et al, in Chang and Campillo, Ref. [49], pp 101–133 (1996).

    Google Scholar 

  80. Weiss D.S. et al, Opt. Lett. 20, 1835 (1995)

    Article  ADS  Google Scholar 

  81. Sandoghdar V. et al, Phys. Rev. A54, R1777 (1996).

    ADS  Google Scholar 

  82. Chang R.K. Chen G. and Mazumder M.M., « Nonlinear Optics of micrometer sized droplets » in Ref. [2], pp. 75–99.

    Google Scholar 

  83. Klimov V.V., Ducloy M. and Letokhov V.S., J. Mod. Optics 43 549 (1996).

    Article  ADS  Google Scholar 

  84. Klimov V.V., Ducloy M. and Letokhov V.S., J. Mod. Optics 43 2251 (1996)

    Article  ADS  Google Scholar 

  85. Mabuchi H. and Kimble H.J., Opt. Lett. 19, 749 (1994);

    Article  ADS  Google Scholar 

  86. see also Dowling J.P. and Gea-Banacloche J., Adv. At. Mol. Opt. Phys. 37, 1 (1996).

    Article  ADS  Google Scholar 

  87. Treussart F. et al, Opt. Lett. 19, 1651 (1994).

    Article  ADS  Google Scholar 

  88. Klimov V et al, to be published.

    Google Scholar 

  89. Kanorsky S.I. and Weis A., « Atoms in nanocavities », Ref [2], pp. 367–393.

    Google Scholar 

  90. Klimov V.V. and Letokhov V.S., Laser Physics 6, 475 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ducloy, M. (1998). Quantum Optics of Atomic Systems Confined in a Dielectric Environment. In: García, N., Nieto-Vesperinas, M., Rohrer, H. (eds) Nanoscale Science and Technology. NATO ASI Series, vol 348. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5024-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5024-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6109-4

  • Online ISBN: 978-94-011-5024-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics