Skip to main content

Confined Electrons and Photons

A Domain where New Physical Phenomena, Device Concepts And Widescale Applications Converge

  • Chapter
Book cover Nanoscale Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 348))

  • 293 Accesses

Abstract

The scientific fields of confined electrons and photons have become areas of major efforts worldwide. Their appeal originates in the many facets they offer in fundamental and applied science, in technology and device development, and to high technology, large-scale industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burstein, E. and Weisbuch, C. (1995) Confined electrons and photons, Plenum, Boston.

    Book  Google Scholar 

  2. Rarity, J. and Weisbuch, C. (1996) Microcavities and Photonic bandgaps: physics and applications, Kluwer, Dordrecht.

    Book  Google Scholar 

  3. Dodabalapur, A. (1997) Organic light emitting diodes, Solid State Commun., 102, 259–267.

    Article  ADS  Google Scholar 

  4. Carr, W. N. (1991) Photometric Figures of Merit for Semiconductor Luminescent Sources Operating in Spontaneous Mode, in S. M. Sze (ed.), Semiconductor Devices Pioneering Papers, World Scientific, London, p. 919.

    Google Scholar 

  5. Craford, M. G. (1996) Commercial Light Emitting Diode Technology: status, trends and possible future performances in [2], pp. 323–331.

    Google Scholar 

  6. Moon, R. L. (1997) MOVPE: is there any technology for optoelectronics ?, J. Cryst. Growth, 170, 1–10.

    Article  ADS  Google Scholar 

  7. Schnitzer, I. et al. (1993) Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AIGaAs/GaAs/AIGaAs double heterostructures, Appl. Phys. Lett., 62, 131.

    Article  ADS  Google Scholar 

  8. Andreani, L. C. (1995) Optical transitions, excitons and polaritons in bulk and low-dimensional semiconductor structures, in [1], pp. 57–112.

    Google Scholar 

  9. Schmitt-Rink, S., Chemla, D. S. and Miller, D. A. B. (1989) Linear and nonlinear optical properties of semiconductor quantum wells, Adv. Phys., 38, 89–188.

    Article  ADS  Google Scholar 

  10. Weisbuch, C. and Vinter, B. (1991) Quantum Semiconductor Structures: Fundamentals and applications, Academic Press, Boston.

    Google Scholar 

  11. Miller, D. A. B. (1995) Quantum wells optical switching devices, in [1] pp. 675–701.

    ADS  Google Scholar 

  12. Coldren, L. A. and Corzine, S. W. (1995) Diode lasers and photonic integrated circuits, Wiley, New-York.

    Google Scholar 

  13. Faist, J. et al. (1997) Laser action by tuning the oscillator strength, Nature, 387, 777–782.

    Article  ADS  Google Scholar 

  14. Faist, J. et al. (1994) Quantum Cascade Laser, Science, 264 553–556.

    Article  ADS  Google Scholar 

  15. Arakawa, Y. and Sakaki, H. (1982) Multidimensional quantum well laser and its temperature dependence of the current threshold, Appl. Phys. Lett., 40 939–941.

    Article  ADS  Google Scholar 

  16. Arakawa, Y. (1995) Semiconductor nanostructure lasers: fundamentals and fabrication, in [1] pp. 647–673.

    Google Scholar 

  17. Asada, M., Miyamoto, Y. and Suematsu, Y. (1986) Gain and the threshold of three-dimensional quantum-box lasers, IEEE J. of Quantum Electron., 22 1915–1921.

    Article  ADS  Google Scholar 

  18. Eberl, K., Petroff, P. M. and Demeester, P. (1995) Low dimensional structures prepared by epitaxial growth or regrowth on patterned substrates, Kluwer, Dordrecht.

    Book  Google Scholar 

  19. Arakawa, Y. (1994) Fabrication of quantum wires and dots by MOCVD selective growth, Solid-state electronics, 37 523–528.

    ADS  Google Scholar 

  20. Tiwari, S. et al. (1994) High efficiency and low threshold current strained V-groove quantum-wire lasers, Appl. Phys. Lett., 64 3536–3538.

    Article  ADS  Google Scholar 

  21. Brunner, K. et al. (1992) Photoluminescence from a single GaAs/AlGaAs quantum dot, Phys. Rev. Lett., 69 3316–3219.

    Article  Google Scholar 

  22. Vahala, K. J. et al. (1993) Lower-dimensional quantum structures by selective growth and gas-phase nucleation, J. Vac. Sc. Technol. B, 11 1660–1666.

    Article  Google Scholar 

  23. Bawendi, M. G. (1995) Synthesis and spectroscopy of II-VI quantum dots: an overview, in [1], pp. 339–356.

    Google Scholar 

  24. Brunner, K. et al. (1994) Sharp line photoluminescence of excitons localized at GaAs/AIGaAs quantum well inhomogeneities, Appl. Phys. Lett., 64 3320–3322.

    Article  ADS  Google Scholar 

  25. Gammon, D., Snow, E. and Katzer, D. S. (1995) Excited state spectroscopy of excitons in single quantum dots, Appl. Phys. Leu., 67 2391–2393.

    Article  ADS  Google Scholar 

  26. Wegscheider, W. et al. (1993) Lasing from Excitons in Quantum Wires, Phys. Rev. Lett., 71 4071–4074.

    Article  ADS  Google Scholar 

  27. Rinaldi, R. et al. (1997) Exciton binding energy in GaAs V-shaped quantum wires, Phys. Rev. Lett., 732899–2902.

    Article  ADS  Google Scholar 

  28. Ogawa, T. and Takagahara, T. (1991) Optical absorption and Sommerfeld factor of one-dimensional semiconductors: an exact treatment of excitonic effects, Phys. Rev. B, 44 8138–8156.

    Article  ADS  Google Scholar 

  29. Rossi, F. and Molinari, E. (1996) Coulomb-induced suppression of band-edge singularities in the optical spectra of realistic quantum-wire structures, Phys. Rev. Lett., 76 3642–3645.

    Article  ADS  Google Scholar 

  30. Hanamura, E. (1988) Very large optical nonlinearity of semiconductor microcrystallites, Phys. Rev. B, 37 1273–1279.

    Article  ADS  Google Scholar 

  31. Takagahara, T. (1987) Excitonic optical nonlinearity and exciton dynamics in semiconductor quantum dots, Phys. Rev. B, 36 9293–9296.

    Article  ADS  Google Scholar 

  32. Bockelmann, U. (1993) Exciton relaxation and radiative recombination in semiconductor quantum dots, Phys. Rev. B, 48 17637–17640.

    Article  ADS  Google Scholar 

  33. Nakamura, A., Yamada, H. and Tokizaki, T. (1989) Size-dependent radiative decay in CuCI semiconducting quantum spheres embedded in glasses, Phys. Rev. B, 40 8585–8588.

    Article  ADS  Google Scholar 

  34. Marzin, J. Y. et al. (1994) Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs, Phys. Rev. Lett., 73 716–719.

    Article  ADS  Google Scholar 

  35. Gammon, D. et al. (1996) Homogeneous linewidths in the optical spectrum of a single GaAs quantum dot, Science, 273 87–90.

    Article  ADS  Google Scholar 

  36. Gérard, J.-M. (1995) Prospects of high-efficiency quantum boxes obtained by direct epitaxial growth, in [1], pp. 357–381.

    Google Scholar 

  37. Steffen, R. et al. (1996) Single quantum dots as local probes of electronic properties of semiconductors, Phys. Rev.B, 54 1510–1513.

    Article  ADS  Google Scholar 

  38. Empedocles, S. A., Norris, D. J. and Bawendi, M. G. (1996) Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Phys. Rev. Lett., 77 3873–3876.

    Article  ADS  Google Scholar 

  39. Anand, S. et al. (1996) Sharp line injection luminescence from InP quantum dots buried in GaInP, J. Appl. Phys., 80 1251–1253.

    Article  ADS  Google Scholar 

  40. Bockelmann, U. and Bastard, G. (1990) Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases, Phys. Rev. B, 42 8947.

    Article  ADS  Google Scholar 

  41. Benisty, H., Sotomayor-Tores, C. M. and Weisbuch, C. (1991) Intrinsic mechanism for the poor luminescence properties of quantum-box systems, Phys. Rev. B, 44 10945–10948.

    Article  ADS  Google Scholar 

  42. Hessman, D. et al. (1996) Excited states of individual quantum dots studied by photoluminescence spectroscopy, Appl. Phys. Lett., 69 749–751.

    Article  ADS  Google Scholar 

  43. Wang, P. D. and Sotomayor Torres, C. M. (1993) Multiple-phonon relaxation in GaAs-AIGaAs quantum well dots, J. Appl. Phys., 74 5047–5052.

    Article  ADS  Google Scholar 

  44. Heitz, R. et al. (1996) Multiphonon-relaxation processes in self-organized InAs/GaAs quantum dots, Appl. Phys. Leu., 68 361–363.

    Article  ADS  Google Scholar 

  45. Gérard, J. M., Private communication

    Google Scholar 

  46. Adler, F. et al. (1996) Optical transitions and carrier relaxation in self assembled InAs/GaAs quantum dots, J. Appl. Phys., 80 4019–4026.

    Article  ADS  Google Scholar 

  47. Bockelmann, U. and Egeler, T. (1992) Electron relaxation in quantum dots by means of Auger processes, Phys. Rev. B, 46 15574–15577.

    Article  ADS  Google Scholar 

  48. Efros, A. L., Kharchenko, V. A. and Rosen, M. (1995) Breaking the phonon bottleneck in nanometer quantum dots: role of Auger-like processes, Solide state communications, 93 281–284.

    Article  ADS  Google Scholar 

  49. Inoshita, T. and Sakaki, H. (1992) Electron relaxation in a quantum dot: significance of multiphonon processes, Phys. Rev. B, 46 7260–7263.

    Article  ADS  Google Scholar 

  50. Woggon, U. et al. (1996) Ultrafast energy relaxation in quantum dots, Phys. Rev. B, 54 17681–17690.

    Article  ADS  Google Scholar 

  51. Murray, C. B., Norris, D. J. and Bawendi, M. G. (1993) Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites, J. of Am. Chem. Soc., 115 8706.

    Article  Google Scholar 

  52. Nomura, S. and Kobayashi, T. (1992) Exciton-LA and TA phonon couplings in a spherical semiconductor microcrystallite, Solid State Commun., 82 335–340.

    Article  ADS  Google Scholar 

  53. Knipp, P. A. and Reinecke, T. L. (1995) Coupling between electrons and acoustic phonons in semiconductor nanostructures, Phys. Rev. B, 52 5923–5928.

    Article  ADS  Google Scholar 

  54. Molinari, E. (1995) Phonons and electron-phonon interaction in low-dimensional structures, in [1], pp. 161–203.

    MathSciNet  Google Scholar 

  55. Derry, P. L. et al. (1987) Ultralow-threshold graded-index separate confinement single quantum well buried heterostructure (A1,Ga)As lasers with high reflectivity coatings, Appl. Phys. Lett., 50 1773–1775.

    Article  ADS  Google Scholar 

  56. Nagle, J. et al. (1986) Threshold current of single quantum well lasers: The role of the confining layers, Appl. Phys. Lett., 49 1325–1327.

    Article  ADS  Google Scholar 

  57. Wang, J., Griesinger, U. A. and Schweizer, H. (1996) Direct determination of carrier capture times in low-dimensional semiconductor lasers: the role of quantum capture in high speed modulation, Appl. Phys. Lett., 69 1585–1587.

    Article  ADS  Google Scholar 

  58. Tiwari, S. and Woodall, J. M. (1994) Experimental comparison of strained quantum-wire and quantum-well laser characteristics, Appl. Phys. Lett., 64 2211–2213.

    Article  ADS  Google Scholar 

  59. Gérard, J. M., Cabrol, O. and Sermage, B. (1996) InAs quantum boxes: highly efficient radiative traps for light emitting devices on Si, Appl. Phys. Lett., 68 3123–3125.

    Article  ADS  Google Scholar 

  60. Egawa, T. et al., (1996) First fabrication of AlGaAs/GaAs laser diodes with GaAs islands active regions on Si grown by droplet epitaxy, IEDM, pp. 413–416.

    Google Scholar 

  61. Lester, S. D. et al. (1996) High dislocation densities in high efficiency GaN-based light-emitting diodes, Appl. Phys. Lett., 66 1249–1251.

    Article  ADS  Google Scholar 

  62. Nakamura, S. (1997) III-V nitride based light-emitting devices, Solid State Commun., 102 237–248.

    Article  ADS  Google Scholar 

  63. Chichibu, S. et al. (1996) Spontaneous emission of localized excitons in InGaN single and multiquantum well structures, Appl. Phys. Lett., 69 4188–4190.

    Article  ADS  Google Scholar 

  64. Narukawa, Y. et al. (1997) Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm, Appl. Phys. Lett., 70 981–983.

    Article  ADS  Google Scholar 

  65. Yablonovitch, E. (1993) Photonic band-gap structures, J. Opt. Soc. Am. B, 10 23.

    Article  Google Scholar 

  66. Joannopoulos, J. D., Meade, R. D. and Winn, J. N. (1995) Photonic Crystals, Molding the Flow of Light, Princeton University Press, Princeton, NJ.

    Google Scholar 

  67. Soukoulis, C. M. (1996) Photonic bandgap materials, NATO ASI Series, vol. 315, Kluwer, Dordrecht.

    Book  Google Scholar 

  68. Stanley, R. P. et al. (1993) Impurity Modes in One-Dimensional Periodic-Systems: The Transition from Photonic Band-Gaps to Microcavities, Phys. Rev. A, 48 2246–2250.

    Article  ADS  Google Scholar 

  69. Yokoyama, H., Nambu, Y. and Kawakami, T. (1995) Controlling spontaneous emission and microcavities, in [1], pp. 427–466.

    Google Scholar 

  70. Björk, G., Yamamoto, Y. and Heitmann, H. (1995) Spontaneous emission control in semiconductor microcavities, in [1] pp. 467–501.

    Google Scholar 

  71. Haroche, S. and Kleppner, D. (1989) Cavity Q. E. D. Phys. Today, 42 24–30.

    Article  ADS  Google Scholar 

  72. Berman, P. R. (1994) Cavity quantum electrodynamics, Academic Press, Boston.

    Google Scholar 

  73. Björk, G. (1994) On the Spontaneous Lifetime Change in an Ideal Planar Microcavity - Transition from a Mode Continuum to Quantized Modes IEEE J. Quantum Electron., QE 30 2314–2318.

    Article  ADS  Google Scholar 

  74. Brorson, S. and Skoovgard, P. M. W. (1996) Optical mode density and spontaneous emission in microcavities in R. K. Chang and A. J. Campillo (eds.), Optical processes in microcavities, World Scientific, Singapore, pp. 77–99.

    Chapter  Google Scholar 

  75. Benisty, H., De Neve, H. and Weisbuch, C. (1997) Impact of planar microcavities effects on light extraction, to be published

    Google Scholar 

  76. Baba, T. et al. (1991) Spontaneous emission factor of a microcavity DBR surrface emitting laser IEEE J. Quantum Electron., QE 27 1347–1358.

    Article  ADS  Google Scholar 

  77. Hunt, N. E. J. et al. (1992) Enhanced spectral power density and reduced linewidth at 1.3 μm in an InGaAsP quantum well resonant cavity light-emitting diode., Appl. Phys. Lett., 61 2287–2289.

    Article  ADS  Google Scholar 

  78. De Neve, H. et al. (1997) Recycling of guided mode light emission in planar microcavity light emitting diodes, Appl. Phys. Lett., 70 799.

    Article  ADS  Google Scholar 

  79. Björk, G., Heitmann, H. and Yamamoto, Y. (1993) Spontaneous-Emission Coupling Factor and Mode Characteristics of Planar Dielectric Microcavity Lasers Phys. Rev., A 47 4451–4463.

    ADS  Google Scholar 

  80. Björk, G. (1994) On the spontaneous lifetime change in an ideal planar microcavity - transition from a mode continuum to quantized modes, IEEE J. Quantum Electron., 30 2314.

    Article  ADS  Google Scholar 

  81. Yokoyama, H. and Ujihara, K. (1995) Spontaneous emission and laser oscillation in microcavities. CRC Press, Boca Raton.

    Google Scholar 

  82. Yokoyama, H. (1992) Physics and device applications of optical microcavities, Science, 256 66–70.

    Article  ADS  Google Scholar 

  83. Björk, G., Karlsson, A. and Yamamoto, Y. (1994) Definition of a laser threshold, Phys. Rev. A, 50 1675–1680.

    Article  ADS  Google Scholar 

  84. Yamamoto, Y. and Slusher, R. E. (1993) Optical Processes in Microcavities, Phys. Today, 46 66–73.

    Article  Google Scholar 

  85. Yamamoto, Y., Machida, S. and Richardson, W. H. (1992) Photon Number Squeezed States in Semiconductor Lasers, Science, 255 1219–1224.

    Article  ADS  Google Scholar 

  86. Weisbuch, C. et al. (1992) Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev. Lett., 69 3314–3317.

    Article  ADS  Google Scholar 

  87. Tassone, F. et al. (1996) Time resolved photoluminescence from a semiconductor microcavity, in [2], pp. 87–94.

    Google Scholar 

  88. Savona, V. and Weisbuch, C. (1996) Time-resolved light emission from polaritons in a semiconductor microcavity under resonant excitation, Phys. Rev. B, 54 10835–10840.

    Article  ADS  Google Scholar 

  89. Stanley, R. P. et al. (1996) Cavity polariton photoluminescence in semiconductor microcavities: experimental evidence, Phys. Rev. B, 53 10995–11007.

    Article  ADS  Google Scholar 

  90. Houdré, R. et al. (1994) Measurement of cavity-polaritons dispersion curve from angle resolved photoluminescence experiments, Phys. Rev. Lett., 73 2043–2046.

    Article  ADS  Google Scholar 

  91. Deveaud, B. et al. (1991) Enhance radiative recombination of free excitons in GaAs quantum wells, Phys. Rev. Lett., 67 2355–2358.

    Article  ADS  Google Scholar 

  92. Citrin, D. S. (1992) Long intrinsic radiative lifetimes of excitons in quantum wires, Phys. Rev. Lett., 69 3393–3395.

    Article  ADS  Google Scholar 

  93. Akiyama, H. et al. (1994) Thermalization effect on radiative decay of excitons in quantum wires, Phys. Rev. Lett., 72 2123.

    Article  ADS  Google Scholar 

  94. Gershoni, D. and Katz, M. (1994) Radiative lifetimes of excitons in quantum wires, Phys. Rev. B, 50 8930–8933.

    Article  ADS  Google Scholar 

  95. Agranovitch, V. M., Benisty, H. and Weisbuch, C. (1997) Organic and inorganic quantum wells in a microcavity, Solid State Commun., 102 631–636.

    Article  ADS  Google Scholar 

  96. Houdré, R. et al. (1995) Saturation of the strong coupling régime in semiconductor microcavity: free carrier bleaching of cavity-polaritons, Phys. Rev. B, 92 7810.

    Article  ADS  Google Scholar 

  97. Jahnke, F. et al. (1996) Excitonic nonlinearities of semiconductor microcavities in the nonperturbative regime, Phys. Rev. Lett., 77 5257–5260.

    Article  ADS  Google Scholar 

  98. Yamamoto, Y. (1996) Squeezing and cavity QED in semiconductors in M. Ducloy and D. Bloch (eds.), Quantum optics of confined systems, Kluwer, Dordrecht, pp. 201–281.

    Google Scholar 

  99. Zhang, J. P. et al. (1995) Photonic-wire laser, Phys. Rev. Lett., 75 2678–2681.

    Article  ADS  Google Scholar 

  100. Slusher, R. E. and Mohideen, U. (1996) Dynamic optical processes in microdisk lasers in R. K. Chang and A. J. Campillo (eds.), Optical processes in microcavities, World Scientific, Singapore, pp. 315–337.

    Chapter  Google Scholar 

  101. Lefevre- Seguin, V. et al. (1996) Very high whispering-gallery mode in Silica microspheres for cavity- QED experiments, ibid [100], pp. 101–133.

    Google Scholar 

  102. Chang, R. K. and Campillo, A. J. (1996) Optical processes in microcavities, World Scientific, Singapore.

    Google Scholar 

  103. Gérard, J. M. et al. (1996) Quantum boxes as active probes for photonic microstructures: the pillar microcavity case, Appl. Phys. Lett., 69 449–451.

    Article  ADS  Google Scholar 

  104. Campillo, A. J., Eversole, J. D. and Lin, H.-B. (1996) Cavity QED modified stimulated and spontaneous processes, in microdroplets in [102], pp. 167–207.

    Google Scholar 

  105. Sandhogar, V. et al. (1996) Very low threshold whispering-gallery-mode microsphere laser, Phys. Rev. A, 54 1777–1784.

    Article  ADS  Google Scholar 

  106. Sakoda, K. (1995) Transmittance and Bragg reflectivity of two-dimensional photonic lattices, Phys. Rev. B, 52 8992.

    Article  ADS  Google Scholar 

  107. Labilloy, D. et al. (1997) Use of guided spontaneous emission of a semiconductor to probe the optical properties of two-dimensional photonic crystals, Appl. Phys. Lett., in press.

    Google Scholar 

  108. Krauss, T. F., De La Rue, R. M. and Brand, S. (1996) Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature, 383 699–702.

    Article  ADS  Google Scholar 

  109. Labilloy, D. et al. Quantitative measurement of transmission, reflection and diffraction of two-dimensional photonic bandgap structures at near-infrared wavelengths, to be published

    Google Scholar 

  110. Cheng, C. C. et al. (1996) Lithographic band gap tuning in photonic band gap crystals, J. Vac. Sci. Technol. B, 14 4110.

    Article  Google Scholar 

  111. Ledentsov, N. N. et al. (1996) Direct formation of vertically coupled quantum dots in StranskiKrastanow growth, Phys. Rev. B, 54, 8743–8750.

    Article  ADS  Google Scholar 

  112. Blondelle, J. et al. (1995) 16% External Quantum Efficiency from Planar Microcavity LEDs at 940 nm by precise matching of cavity wavelength, Electron. Lett., 31 1286–1288.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Weisbuch, C., Benisty, H., Labilloy, D., Houdré, R., Stanley, R.P., Ilegems, M. (1998). Confined Electrons and Photons. In: García, N., Nieto-Vesperinas, M., Rohrer, H. (eds) Nanoscale Science and Technology. NATO ASI Series, vol 348. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5024-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5024-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6109-4

  • Online ISBN: 978-94-011-5024-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics