Skip to main content

Light Emission in Silicon Nanostructures

  • Chapter
Nanoscale Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 348))

Abstract

Interest in obtaining useful light emission from silicon-based materials has never been greater. This is because there is a strong demand for optoelectronic devices based on silicon and also because there has recently been significant progress in materials engineering methods. Here we review the latest developments in this work, which is aimed at overcoming the indirect band gap limitations in light emission from silicon. Subjects covered include optical band gap engineering through quantum confinement and Brillouin zone folding in silicon-based superlattices and heterostructures, light emission from isoelectronic and erbium impurity centres in silicon, and luminescence in silicon nanoparticles and porous silicon. One promising new approach, based on thin-layer Si/SiO2 superlattices, is reviewed in detail. The incorporation of these different materials into devices is described and future device prospects are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kasper, E. and Schäffler, E (1991)Group-IV compounds, T.P. Pearsall (ed.), in Strained-Layer Superlattices: Materials Science and Technology, Academic Press, Boston, pp. 223–309.

    Google Scholar 

  2. Abstreiter, G. (1992) Engineering the future of electronics, Physics World 5 (3), 36–39.

    Google Scholar 

  3. Saleh, B.A. and Teich, M.C. (1991) Fundamentals of Photonics, Wiley, New York.

    Book  Google Scholar 

  4. Soref, R.A. (1993) Silicon-based optolectronics, Proc. IEEE 81 1687–1706.

    Article  Google Scholar 

  5. Kasper, E. and Presting, H. (1990) Device concepts for SiGe optoelectronics, SPIE Proc. 1361 302–312.

    Article  ADS  Google Scholar 

  6. Soref, R.A. (1996) Silicon-based group IV heterostructures for optoelectronic applications, J. Vac. Sci. Technol. A 14 913–918.

    Article  ADS  Google Scholar 

  7. Iyer, S.S. and Xie, Y.-H. (1993) Light emission from silicon, Science 260 40–46.

    Article  ADS  Google Scholar 

  8. Kimerling, L.C., Kolenbrander, K.D., Michel, J., and Palm, J. (1997) Light emission from silicon, Solid State Phys. 50 333–381.

    Article  Google Scholar 

  9. Lockwood, D.J. (1997) Light Emission in Silicon, Academic, Boston.

    Google Scholar 

  10. Lockwood, D.J. (1994) Optical properties of porous silicon, Solid State Commn. 92 101–112.

    Article  ADS  Google Scholar 

  11. Properties of Silicon (1988) INSPEC, London.

    Google Scholar 

  12. Chelikowsky, I.R. and Cohen, M.L. (1976). Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors, Phys. Rev. B 14 556–582.

    Article  ADS  Google Scholar 

  13. Pankove, J.I. (1971) Optical Processes in Semiconductors, Dover, New York.

    Google Scholar 

  14. Yoffe, A.D. (1993) Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems, Advan. Phys. 42 173–262.

    Article  ADS  Google Scholar 

  15. Gnutzman, U. and Clausecker, K. (1974) Theory of direct optical transitions in an optical indirect semiconductor with a superlattice structure, AppL Phys. 3 9–14.

    Article  ADS  Google Scholar 

  16. Jackson, S.A. and People, R. (1986) Optical absorption probability for the zone-folding induced quasi-direct gap in Ge(x)Si(1-x)/Si strained layer superlattices, Mat. Res. Soc. Symp. Proc. 56 365–370.

    Article  Google Scholar 

  17. People, R. and Jackson, S.A. (1987) Indirect, quasidirect, and optical transitions in the pseudomorphic (4x4)-monolayer Si-Ge strained-layer superlattice on Si (001), Phys. Rev. B 36 1310–1313.

    Article  ADS  Google Scholar 

  18. Brey, L. and Tejedor, C. (1987) New optical transitions in Si-Ge strained superlattices, Phys. Rev. Lett. 59 1022–1025.

    Article  ADS  Google Scholar 

  19. Froyen, S., Wood, D.M., and Zunger, A. (1987) New optical transitions in strained Si-Ge superlattices, Phys. Rev. B 36 4547–4550.

    Article  ADS  Google Scholar 

  20. Hybertsen, M.S. and Schlüter, M. (1987) Theory of optical transitions in Si/Ge (001) strained-layer superlattices. Phys. Rev. B 36 9683–9693.

    Article  ADS  Google Scholar 

  21. Pearsall, T.P., Bevk, J., Feldman, L.C., Bonar, J.M., Mannaerts, J.P., and Ounnarzd, A. (1987) Structurally induced optical transitions in Ge-Si superlattices, Phys. Rev. Lett. 58 729–732.

    Article  ADS  Google Scholar 

  22. Zachai, R., Eberl, K., Abstreiter, G., Kasper, H., and Kibbel, H. (1990) Photoluminescence in short-period Si/Ge strained-layer superlattices, Phys. Rev. Lett. 641055–1058.

    Article  ADS  Google Scholar 

  23. Menczigar, U., Abstreiter, G. Olajos, J., Grimmeiss, H.G., Kibbel, H., Presting, H., and Kasper, E. (1993) Enhanced band-gap luminescence in strain-symmetrized (Si)m/(Ge)n superlatticesPhys. Rev. B 47 4099–4102.

    Article  ADS  Google Scholar 

  24. Presting, H., Menczigar, U., Abstreiter, G., Kibbel, H., and Kasper, E. (1992) Electra-and photoluminescence from ultrathin SimGen superlattices, Mat. Res. Soc. Symp. Proc. 256 83–88.

    Article  Google Scholar 

  25. Menczigar, U., Brunner, J., Freiss, E., Gail, M., Abstreiter, G., Kibbel, H., Presting, H., and Kasper, E. (1992) Photoluminescence studies of Si/Si1-x,Gex quantum wells and SimGen superlattices, Thin Solid Films 222227–233.

    Article  ADS  Google Scholar 

  26. Presting, H., Kibbel, H., Jaros, M., Turton, R.M., Menczigar, U., Abstreiter, G., and Grinuneiss, H.G. (1992) Ultrathin Si Ge strained layer superlattices - a step towards Si optoelectronics, Semicond Sci. Technol. 7, 1127–1148

    Article  ADS  Google Scholar 

  27. Pearsall, T.P. (1994) Electronic and optical properties of Ge-Si superlattices, Prog. Quantum Optics 18 97–152.

    Article  ADS  Google Scholar 

  28. Engvall, J., Olajos, J., Grimmeiss, H.G., Presting, H., Kibbel, H., and Dasper, E. (1993) Electroluminescence at room temperature of a SinGem strained-layer superlattice, Appl. Phys. Lett. 63 491–493.

    Article  ADS  Google Scholar 

  29. Engvall, J., Olajos, J., Grimmeiss, H.G., Kibbel, H.., and Presting, H. (1995) Luminescence from monolayer-thick Ge quantum wells embedded in Si, Phys. Rev. B 51 2001–2004.

    Article  ADS  Google Scholar 

  30. People, R. and Jackson, S.A. (1990) Structurally induced states from strain and confinement, in T.P. Pearsall (ed.), Strained Layer Superlattices: Physics, Academic Press, Boston, pp. 119–174.

    Google Scholar 

  31. Houghton, D.C., Aers, G.C., Yang, S.-RE., Wang, E., and Rowell, N.L. (1995) Type I band alignment in St1-xGex/Si(001) quantum wells: Photoluminescence under applied [110] and [100] uniaxial stress, Phys. Rev. Lett. 75, 866–869.

    Article  ADS  Google Scholar 

  32. St. Amour, A., Liu, C.W., Sturm, J.C., Lacroix, Y., and Thewalt, M.L.W. (1995) Defect-free band-edge photoluminescence and band gap measurement of pseudomorphic Si1-x-yGexCy alloy layers on Si(100)Appl. Phys. Lett. 67 3915–3917.

    Article  ADS  Google Scholar 

  33. Omer, B.A., Olowolafe, J., Roe, K., Kolodzey, J., Laursen, T., Mayer, J.W., and Spear, J. (1996) Band gap of Ge rich Si1-x-yGexCy alloys, AppL Phys. Len. 69 2557–2559.

    Article  ADS  Google Scholar 

  34. Soref, R.A., Atzman, Z., Shaapur, F., Robinson, M., and Westhoff, R. (1996) Infrared waveguiding in Si1-x-yGexCy upon silicon, Optics Lett. 21 345–347.

    Article  ADS  Google Scholar 

  35. Rowell, N.L., Noël, J.-P., Houghton, D.C., and Buchanan, M. (1990) Electroluminescence and photoluminescence from Si1-xGex alloys, AppL Phys. Lett. 58 957–958.

    Article  ADS  Google Scholar 

  36. Noël, J.-P., Rowell, N.L., Houghton, D.C., and Perovic, D.D. (1990) Intense photoluminescence between 1.3 and 1.8 pm from strained Si1-xGex alloys, Appl. Phys. Len. 57,1037–1039.

    Article  ADS  Google Scholar 

  37. Sturm, J.C., Manohoran, H. Lenchyshyn, L.C., Thewalt, M.L.W., Rowell, N.L., Noël, J.-P., and Houghton, D.C. (1991) Well-resolved band edge photoluminescence of excitons confined in strained Si1-xGex quantum wells, Phys. Rev. Lett. 66 1362–1365.

    Article  ADS  Google Scholar 

  38. Lenchyshyn, L.C., Thewalt, M.L.W., Sturm, J.C., Schwartz, P.V., Prince, E.J., Rowell, N.L., Noël, J.-P., and Houghton, D.C. (1992) High quantum efficiency photoluminescence from localized excitons in Si1-xGex, Appl. Phys. Len. 60 3174–3176.

    Article  ADS  Google Scholar 

  39. Noël, J.-P., Rowell, N.L., Houghton, D.C., Wang, A., and Perovic, D.D. (1992) Luminescence origins in molecular beam epitaxial Si1-xGex AppL Phys. Len. 61, 690–692.

    Article  ADS  Google Scholar 

  40. Lenchyshyn, L.C., Thewalt, M.L.W., Houghton, D.C., Noël, J.-P., Rowell, N.L., Sturm, J.C., and Xiao, X. (1993) Photoluminescence mechanisms in thin Si1-xGex quantum wells, Phys. Rev. B 47, 16655–16658.

    Article  ADS  Google Scholar 

  41. Rowell, N.L., Noël, J.-P., Houghton, D.C., Wang, A., Lenchyshyn, L.C., Thewalt, M.L.W., and Perovic, D.D. (1993) Exciton luminescence in Si1-xGex/Si heterostructures grown by molecular beam epitaxyJ. Appl. Phys. 74 2790–2805.

    Article  ADS  Google Scholar 

  42. Robbins, D.J., Calcott, P., and Leong, W.Y. (1991) Electroluminescence from a pseudomorphic Si0.8Ge0.2 alloy, AppL Phys. Lett. 59 1350–1352.

    Article  ADS  Google Scholar 

  43. Mi, Q., Xiao, X., Sturm, J.C., Lenchyshyn, L.C., and Thewalt, M.L.W. (1992) Room-temperature 1.3 pm electroluminescence from strained Si1-xGex/Si quantum wells, AppL Phys. Lett. 60 3177–3179.

    Article  ADS  Google Scholar 

  44. Fukatsu, S., Usami, N., Chinzei, T., Shiraki, Y., Nishida, A., and Nakagawa, K. (1992) Electroluminescence from strained SiGe/Si quantum well structures grown by solid source Si molecular beam epitaxy, Jpn. J. Appl. Phys. 31 L1015–L1017.

    Article  ADS  Google Scholar 

  45. Kato, Y., Fukatsu, S., and Shiraki, Y. (1995) Postgrowth of a Si contact layer on an air-exposed Si1-xGex/Si single quantum well grown by gas-source molecular beam epitaxy, for use in an electroluminescent device, J. Vac. Sci. TechnoL B 13, 111–117.

    Article  Google Scholar 

  46. Förster, M., Mantz, U., Ramminger, S., Thonke, K., Sauer, R., Kibbel, H., Schäffier, F., and Herzog, H.-J. (1996) Electroluminescence, photoluminescence, and photocurrent studies of Si/SiGe p-i-n hetersiructures, J. Appl. Phys. 80 3017–3023.

    Article  ADS  Google Scholar 

  47. Presting, H, Zinke, T., Splett, A., Kibbel, H., and Jams, M. (1996). Room-temperature electroluminescence from Si/Ge/Si1-xGex quantum-well diodes grown by molecular-beam epitaxy, Appl. Phys. Lett. 69 2376–2378.

    Article  ADS  Google Scholar 

  48. Thomas, D.G., Gershenzon, M., and Hopfield, J.J. (1963) Bound excitons in GaP, Phys. Rev. 131 2397–2404.

    Article  ADS  Google Scholar 

  49. Ennen, H., Pomrenke, G., Axmann, A., Eisele, K., Haydl, W., and Schneider, J. (1985) 1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy, AppL Phys. Lett. 46 381–383.

    Article  ADS  Google Scholar 

  50. Canham, L.T., Barraclough, K.G., and Robbins, D.J. (1987) 1.3-μm light-emitting diode from silicon electron irradiated at its damage threshold, AppL Phys. Lett. 51, 1509–1511.

    Article  ADS  Google Scholar 

  51. Bradfield, P.L., Brown, T.G., and Hall, D.G. (1989) Electroluminescence from sulfur impurities in a p-n junction formed in epitaxial silicon, Appl. Phys. Len. 55 100–102.

    Article  ADS  Google Scholar 

  52. Davies, G. (1989) The optical properties of luminescence centres in silicon, Physics Reports 176 83–188.

    Article  ADS  Google Scholar 

  53. Brown, T.G. and Hall, D.G. (1986) Observation of electroluminescence from excitons bound to isoelectronic impurities in crystalline silicon, J. Appl. Phys. 59 1399–1401.

    Article  ADS  Google Scholar 

  54. Brown, T.G. and Hall, D.G. (1986) Optical emission at 1.32 pm from sulfur-doped crystalline silicon, Appl. Phys. Lett. 49 245–247.

    Article  ADS  Google Scholar 

  55. Dieke, G.H. (1968) Spectra and Energy Levels of Rare Earth Ions in Crystals, Wiley, New York.

    Google Scholar 

  56. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A. (1983) 1.54-μm luminescence of erbium-implanted III-v semiconductors and silicon, AppL Phys. Len. 43 943–945.

    Article  ADS  Google Scholar 

  57. Palm, J., Gan, F., Zheng, B., Michel, J., and Kimerling, L.C. (1996) Electroluminescence of erbium-doped silicon, Phys. Rev. B 54 17603–17615.

    Article  ADS  Google Scholar 

  58. Michel, J., Zheng, B., Palm, J., Ouellette, E., Gan, F, and Kimerling, L.C. (1996) Erbium doped silicon for light emitting devices, Mat. Res. Soc. Symp. Proc. 422 317–324.

    Article  Google Scholar 

  59. Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.-H., Poate, J.M., and Kimerling, L.C. (1991) Impurity enhancement of the 1.54-μm Er3+ luminescence in silicon, J. Appl. Phys. 70 2672–2678.

    Article  ADS  Google Scholar 

  60. Stimmer, J., Reittinger, A., Abstreiter, G., Holzbrecher, H., and Buchal, Ch. (1996) Growth conditions of erbium-oxygen-doped silicon grown by MBE, Mat. Res. Soc. Symp. Pmc. 422 15–20.

    Article  Google Scholar 

  61. Coffa, S., Franzò, G., and Priolo, F (1996) High efficiency and fast modulation of Er-doped light emitting Si diodes, Appl. Phys. Lett. 69 2077–2079.

    Article  ADS  Google Scholar 

  62. Canham, L.T. (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appt. Phys. Lett. 57 1046–1048.

    Article  ADS  Google Scholar 

  63. Uhlir, A. Jr. (1956) Electrolytic shaping of germanium and silicon, Bell Syst. Tech. J. 35 333–347.

    Google Scholar 

  64. Cullis, A.G., and Canham, L.T. (1991) Visible light emission due to quantum size effects in highly porous crystalline silicon, Nature 353 335–338.

    Article  ADS  Google Scholar 

  65. Lehmann, V., and Gösele, U. (1991) Porous silicon formation: A quantum wire effect, Appt. Phys. Lett. 58 856–858.

    Article  ADS  Google Scholar 

  66. Bsiesy, A., Vial, J.C., Gaspard, F, Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halmaoui, A., and Bomchil, G. (1991) Photoluminescence of high porosity and of electrochemically oxidized porous silicon layers, Surf. Sci. 254 195–200.

    Article  ADS  Google Scholar 

  67. Koshida, N. and Koyama, H. (1991) Efficient visible photoluminescence from porous silicon, Jpn. J. Appl. Phys. 30 L1221–L1223.

    Article  ADS  Google Scholar 

  68. Gardelis, S., Rimmer, J.S., Dawson, P., Hamilton, B., Kubiak, R.A., Whall, T.E., and Parker, E.H.C. (1991) Evidence for quantum confinement in the photoluminescence of porous Si and SiGe, Appl. Phys. Lett. 59 2118–2120.

    Article  ADS  Google Scholar 

  69. Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, E, Herino, R., Ligeon, M., and Muller, F (1991) Electroluminescence in the visible range during anodic oxidation of porous silicon films, Appl. Phys. Lett. 59 304–306.

    Article  ADS  Google Scholar 

  70. Koshida, N. and Koyama, H. (1992) Visible electroluminescence from porous silicon, Appl. Phys. Lett. 60 347–349.

    Article  ADS  Google Scholar 

  71. Bensahel, D.C., Canham, L.T., and Osscicini, S. (1993) Optical Properties of Low Dimensional Structures, Kluwer, Dordrecht.

    Book  Google Scholar 

  72. Feng, Z.C. and Tsu, R. (1994) Porous Silicon, World Scientific, Singapore.

    Book  Google Scholar 

  73. Kanemitsu, Y. (1995) Light emission from porous silicon and related materialsPhys. Reports 263 1–91.

    Article  ADS  Google Scholar 

  74. Vial, J.C. and Derrien, J. (1995) Porous Silicon Science and Technology, Springer-Verlag, Berlin.

    Book  Google Scholar 

  75. Hérino, R. and Lang, W. (1995) Porous Silicon and Related Materials, Elsevier, Amsterdam.

    Google Scholar 

  76. Lockwood, D.J., Fauchet, P.M., Koshida, N., and Brueck, S.R.J. (1996) Advanced Luminescent Materials, The Electrochemical Society, Pennington.

    Google Scholar 

  77. Fauchet, P.M. (1996) Photoluminescence and electroluminescence from porous silicon, J. Lumin. 70 294–309.

    Article  Google Scholar 

  78. Lockwood, D.J., Wang, A., and Bryskiewicz, B. (1994) Optical absorption evidence for quantum confinement effects in porous silicon, Solid State Commun. 89 587–589.

    Article  ADS  Google Scholar 

  79. Lockwood, D.J. and Wang, A.G. (1996) in D.J. Lockwood, P.M. Fauchet, N. Koshida, and S.R.J. Brueck (eds.), Photoluminescence in porous silicon due to quantum confinement, The Electrochemical Society, Pennington, pp. 166–172.

    Google Scholar 

  80. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M. (1996) Silicon-based visible light emitting devices integrated into microelectronic circuits, Nature 384 338–341.

    Article  ADS  Google Scholar 

  81. Pavesi, L., Guardini, R., and Mazzoleni, C. (1996) Porous silicon resonant cavity light emitting diodes, Solid State Commun. 97 1051–1053.

    Article  ADS  Google Scholar 

  82. Ogawa, T. and Kanemitsu, Y. (1995) Optical Properties of Low-Dimensional Materials, World Scientific, Singapore.

    Google Scholar 

  83. Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A., and Nakagiri, T. (1990) Quantum size effects on photoluminescence in ultrafine Si particles, Appl. Phys. Lett. 56 2379–2380.

    Article  ADS  Google Scholar 

  84. Schuppler, S., Friedman, S.L., Marcus, M.A., Adler, D.L., Xie, Y.-H., Ross, F.M., Hams, T.D., Brown, W.L., Chabal, Y.J., Brus, L.E., and Citrin, P.H. (1994) Dimensions of luminescent oxidized and porous silicon structures, Phys. Rev. Lett. 72 2648–2651.

    Article  ADS  Google Scholar 

  85. Kanemitsu, Y., Ogawa, T., Shiraishi, K., and Takeda, K. (1993) Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell, Phys. Rev. B 48 4883–4886.

    Article  ADS  Google Scholar 

  86. Allan, G., Delerue, C., and Lannoo, M. (1996) Nature of luminescent surface states of semiconductor nanocrystallites, Phys. Rev. Lett. 76 2961–2964.

    Article  ADS  Google Scholar 

  87. Brus, L.E., Szajowski, P.F., Wilson, W.L., Harris, T.D., Schuppler, S., and Citrin, P.H. (1995) Electronic spectroscopy and photophysics of Si nanocrystals: Relationship to bulk c-Si and porous Si, J. Amer. Chem. Soc. 117 2915–2922.

    Article  Google Scholar 

  88. Tong, S., Liu, X.-N., Wang, L.-C., Yan, F., and Bao, X.-M. (1996) Visible electroluminescence from nanocrystallites of silicon filins prepared by plasma enhanced chemical vapor deposition, Appl. Phys. Len. 69 596–598.

    Article  ADS  Google Scholar 

  89. Toyama, T., Matsui, T., Kurokawa, Y., Okamoto, H., and Hamakawa, Y. (1996) Visible photo-and electroluminescence from electrochemically formed nanocrystalline Si thin filinAppt. Phys. Lett. 691261–1263.

    Article  ADS  Google Scholar 

  90. Lockwood, D.J., Aers, G.C., Allard, L.B., Bryskiewicz, B., Charbonneau, S., Houghton, D.C., McCaffrey, J.P., and Wang, A. (1992) Optical properties of porous silicon, Can. J. Phys. 70 1184–1193.

    Article  ADS  Google Scholar 

  91. Zunger, A. and Wang, L.-W. (1996) Theory of silicon nanostructures, Appl. Surf. Sci. 102 350–359.

    Article  ADS  Google Scholar 

  92. Tsu, R. (1993) Silicon-based quantum wells, Nature 364 19.

    Article  ADS  Google Scholar 

  93. Lockwood, D.J. (1997) Quantum confined luminescence in Si/SiO2 superlattices, Phase Transitions, to be published.

    Google Scholar 

  94. Lu, Z.H., Lockwood, D.J., and Baribeau, J.-M. (1995) Quantum confinement and light emission in.,SiO2/Si superlattices, Nature 378 258–260.

    Article  ADS  Google Scholar 

  95. Lockwood, D.J., Lu, Z.H., and Baribeau, J.-M. (1996) Quantum confined luminescence in Si/SiO2 superlattices, Phys. Rev. Lett. 76 539–541.

    Article  ADS  Google Scholar 

  96. Lu, Z.H., Lockwood, D.J., and Baribeau, J.-M. (1996) Visible light emitting Si/SiO2 superlattices, Solid-State Electron. 40 197–201.

    Article  ADS  Google Scholar 

  97. Lockwood, D.J., Baribeau, J.M., and Lu, Z.H. (1996) Visible photoluminescence in SiO2/Si superlattices, in D.J. Lockwood, P.M. Fauchet, N. Koshida, and S.R.J. Brueck (eds.), Advanced Luminescent Materials, The Electrochemical Society, Pennington, pp. 339–347.

    Google Scholar 

  98. Brum, J.A. and Bastard, G. (1985) Excitons formed between excited sub-bands in GaAs-Gal-xA1xAs quantum wells, J. Phys. C. Solid State Phys. 18 L789–L794.

    Article  ADS  Google Scholar 

  99. Sullivan, B.T., Lockwood, D.J., Labbé, H.J., and Lu, Z.-H. (1996) Photoluminescence in amorphous Si/ SiO2 superlattices fabricated by magnetron sputtering, Appl. Phys. Lett. 69 3149–3151.

    Article  ADS  Google Scholar 

  100. Tang, Y.S., Wilkinson, C.D.W., Sotomayor Torres, C.M., Smith, D.W., Whall, T.E., and Parker, E.H.C. (1993) Optical properties of Si/Si1-xGex, heterostructure based wires, Solid State Commun. 85 199–202.

    Article  ADS  Google Scholar 

  101. Lee, J., Li, S.H., Singh, J., and Bhattacharaya, P.K. (1994) Low-temperature photoluminescence of SiGe/Si disordered multiple quantum wells and quantum well wires, J. Electron. Mat. 23 831–833.

    Article  ADS  Google Scholar 

  102. Usami, N., Mine, T., Fukatsu, S., and Shiraki, Y. (1993) Realization of crescent-shaped SiGe quantum wire structure on a V-groove patterned Si substrate by gas-source Si molecular beam epitaxy, Appl. Phys. Len. 63 2789–2791.

    Article  ADS  Google Scholar 

  103. Usami, N., Mine, T., Fukatsu, S., and Shiraki, Y. (1994) Optical anisotropy in wire-geometry SiGe layers grown by gas-source selective epitaxial growth technique, Appl. Phys. Lett. 64 1126–1128.

    Article  ADS  Google Scholar 

  104. Nassiopoulos, A.G., Grigoropoulos, S., and Papadimitriou, D. (1996) Light emitting properties of silicon nonopillars produced by lithography and etching, in D.J. Lockwood, P.M. Fauchet, N. Koshida, and S.R.J. Brueck (eds.), Advanced Luminescent Materials, The Electrochemical Society, Pennington, pp. 296–306.

    Google Scholar 

  105. Zaidi, S.H., Chu, A.-S., and Brueck, S.R.J. (1996) Room temperature photoluminescence from manufactured 1-D Si grating structures, in D.J. Lockwood, P.M. Fauchet, N. Koshida, and S.R.J. Brueck (eds.) Advanced Luminescent Materials, The Electrochemical Society, Pennington, pp. 307–316.

    Google Scholar 

  106. Nassiopoulos, A.G., Grigoropoulos, S., and Papadimitriou, D. (1996) Electroluminescent device based on silicon nonopillars, Appl. Phys. Lett. 69 2267–2269.

    Article  ADS  Google Scholar 

  107. Tang, Y.S., Sotomayor Torres, C.M., Kubiak, R.A., Smith, D.A., Whall, T.E., Parker, E.H.C., Presting, H., and Kibbel, H. (1995) Optical emission from Si/Si1-xGex quantum wires and dots, in D.J. Lockwood (ed.), The Physics of Semiconductors, Vol. 2, World Scientific, Singapore, pp. 1735–1738.

    Google Scholar 

  108. Apetz, R., Vescan, L., Hartmann, A., Dieker, C., and Luth, H. (1995) Photoluminescence and electroluminescence of SiGe dots fabricated by island growth, Appl. Phys. Lett. 66 445–447.

    Article  ADS  Google Scholar 

  109. Tang, Y.S., Ni, W.-X., Sotomayor Torres, C.M., and Hansson, G.V. (1995) Fabrication and characterisation of Si-Si0.7Ge0.3 quantum dot light emitting diodes, Electron. Lett. 31 1385–1386.

    Article  Google Scholar 

  110. Hall, D.G. (1993) The role of silicon in optoelectronics, Mat. Res. Soc. Symp. Proc. 298 367–378.

    Article  Google Scholar 

  111. Bozeat, R. and Loni, A. (1995) Silicon-based waveguides offer low-cost manufacturing, Laser Focus World 31 (4), 97–102.

    Google Scholar 

  112. Zheng, B., Michel, J., Ren, F.Y.G., Kemerling, L.C., Jacobson, D.C., and Poate, J.M., Room-temperature sharp line electroluminescence at λ=1.54 μm from an erbium-doped, silicon light-emitting diode, Appl. Phys. Lett. 64 2842–2844.

    Google Scholar 

  113. Collins, R.T., Fauchet, P.M., and Tischler, M.A. (1997) Porous silicon: From luminescence to LEDsPhysics Today 50 (1), 24–31.

    Article  ADS  Google Scholar 

  114. Canham, L.T., Cox, T.I., Loni, A., and Simons, A.J. (1996) Progress towards silicon optoelectronics using porous silicon technology, Appl. Surf. Sci. 102 436–441.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lockwood, D.J. (1998). Light Emission in Silicon Nanostructures. In: García, N., Nieto-Vesperinas, M., Rohrer, H. (eds) Nanoscale Science and Technology. NATO ASI Series, vol 348. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5024-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5024-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6109-4

  • Online ISBN: 978-94-011-5024-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics