Skip to main content

Quo Vadis, Near-Field Optics?

  • Chapter
Nanoscale Science and Technology

Part of the book series: NATO ASI Series ((NSSE,volume 348))

Abstract

Scanning near-field optical microscopy (SNOM) has pushed today’s optical resolution limit to about 20 nm, with a potential for improvement by another order of magnitude still remaining. SNOM provides chemical specificity based on spectral (amplitude, phase), polarization, and/or fluorescence contrast; it also allows dynamic studies with femtosecond time resolution and photochemistry on the nanometer scale. In spite of these prospects and considerable ongoing research efforts, progress in near-field optical microscopy has been rather slow in the past few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pohl, D.W., Denk, W. and Lanz, M. (1984) Optical stethoscopy: Image recording with resolution.λ/20, Appl. Phys. Lett. 44, 651–653.

    Article  ADS  Google Scholar 

  2. Near Field Optics(1993)D.W. Pohl and D. Courjon (eds.), Proceedings of the NATO ARW on Near Field Optics (NFO I), Arc-et-Senans, France, October 1992, NATO ASI Series E: Applied Sciences, Vol. 242, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  3. Betzig, E. (1993) Principles and applications of near-field scanning optical microscopy (NSOM), in [2], pp. 7–15.

    Google Scholar 

  4. Betzig, E., Lewis, A., Harootunian, A., Isaacson, M., and Kratschmer, E. (1986) Near-field scanning optical microscopy (NSOM), Biophys. J. 49, 269–279.

    Article  Google Scholar 

  5. Courjon, D., Sarayeddine, K. and Spajer, M. (1989) Scanning tunneling optical microscopy, Optics Commun. 71, 23–27.

    Article  ADS  Google Scholar 

  6. Reddick, R.C., Warmack, R.J. and Ferrell, T.L. (1989) New form of scanning optical microscopy, Phys. Rev. B 39, 767–770.

    Article  ADS  Google Scholar 

  7. de Fornel, F., Goudonnet, J.P., Salomon, L. and Lesniewska, E. (1989) An evanescent field optical microscope, in Proc. SPIE, Vol. 1139, SPIE, Bellingham, pp. 77–84.

    Google Scholar 

  8. Bainier, C., Leblanc, S., and Courjon, D. (1993) Scanning tunneling optical microscopy: Application to very low relief objects, in [2], pp. 97–104.

    Google Scholar 

  9. Novotny, L., Pohl, D.W., and Hecht, B. (1996) Light confinement in scanning near-field optical microscopy, Ultramicroscopy 61, 1–9.

    Article  Google Scholar 

  10. Fischer, U.Ch. and Pohl, D.W. (1989) Observation on single-particle plasmons by near-field optical microscopy. Phys. Rev. Lett. 62, 458–461.

    Article  ADS  Google Scholar 

  11. Fischer, U.Ch., Diirig, U. and Pohl, D.W. (1989) Scanning near-field optical microscopy (SNOM) in reflection or scanning optical tunneling microscopy (SOTM), Scanning Microscopy 3, 1–7.

    Google Scholar 

  12. Fischer, U.Ch. (1990) Resolution and contrast generation in scanning near-field optical microscopy, in it Scanning Tunneling Microscopy and Related Methods, R.J. Behm, N. Garcia and H. Rohrer (eds.), NATO ASI Series E: Applied Sciences, Vol. 184, Kluwer Academic Publishers, Dordrecht, pp. 475–496.

    Google Scholar 

  13. Koglin, J, Fischer, U.Ch., Brzoska, K.D., Goehde, W. and Fuchs, H. (1995) The tetrahedral tip as a probe for scanning near field optical microscopy, in O. Marti and R. Möller (eds.), Photons and Local Probes, NATO ASI Series E: Applied Sciences, Vol. 300, Kluwer Academic Publishers, Dordrecht, pp. 79–92.

    Chapter  Google Scholar 

  14. Zenhausern, F., Martin, Y. and Wickramasinghe, H.K. (1995) Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution, Science 269, 1083–1085.

    Article  ADS  Google Scholar 

  15. Denk, W. and Pohl, D.W. (1991) Near-field optics: microscopy with nanometer-size fields, J. Vac. Sci. Technol. B 9, 510–513.

    Article  Google Scholar 

  16. Martin, O.J.F. and Girard, Ch. (1997) Controlling and tuning strong optical field gradients at a local probe microscope tip apex, Appl. Phys. Lett. 70, 705–707.

    Article  ADS  Google Scholar 

  17. Valaskovic, G.A., Holton, M., Morrison, G.H. (1995) Image contrast of dielectric specimens in transmission mode near-field scanning optical microscopy: Imaging properties and tip artefacts, J. Microscopy 79, 29–54.

    Article  Google Scholar 

  18. Hecht, B., Bielefeldt, H., Novotny, L., Inouye, Y. and Pohl, D.W. (1997) Facts and artifacts in near-field optical microscopy, J. Appl. Phys. 81, 2492–2498.

    Article  ADS  Google Scholar 

  19. Sandoghdar, V., Wegscheider, S., Krausch, G. and Mlynek, J. (1997) Reflection scanning near-field optical microscopy with uncoated fiber tips: How good is the resolution really? J. Appl.Phys. 81, 2499–2503.

    Article  ADS  Google Scholar 

  20. Williamson, R.L., Bereton, L.J., Pidduck, A.J. and Miles, M.J. (1997) Are artefacts in scanning near-field optical microscopy related to the misuse of shear-force? Ultramicroscopy (in press).

    Google Scholar 

  21. Bozhevolnyi, S. (1997) Topographical artifacts and optical resolution in near-field optical microscopy, J. Opt. Soc. Am. B 14(9) (in press).

    Google Scholar 

  22. Bethe, H.A. (1944) Theory of diffraction by small holes, Phys. Rev. 66, 163–182.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Bouwkamp, C.J. (1950) On Bethe’s theory of diffraction by small holes, Philips Res. Rep. 5, 321–332.

    MathSciNet  Google Scholar 

  24. Leviatan, Y. (1986) Study of near-zone fields of a small aperture, J. Appl. Phys. 60, 1577–1583.

    Article  ADS  Google Scholar 

  25. Klimov, V.V. and Letokhov, V.S. (1996) Atom optics in the laser near field, Laser Phys. 6, 475–500.

    Google Scholar 

  26. Novotny, L., Pohl, D.W. and Hecht, B. (1995) Scanning near-field optical probe with ultrasmall spot size, Opt. Lett. 20, 970–972.

    Article  ADS  Google Scholar 

  27. Hecht, B., Heinzelmann, H.. and Pohl, D.W. Influence of detection optics on imaging properties of a scanning near-field optical microscope (in preparation).

    Google Scholar 

  28. Lacoste, T., Huser, T., Heinzelmann, H. and Güntherodt, H.J. (in preparation).

    Google Scholar 

  29. Fischer, U.Ch. and Zingsheim, H.P. (1981) Submicroscopic pattern replication with visible light, J. Vac. Sci. Technol. 19, 881–885.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pohl, D.W., Hecht, B., Heinzelmann, H. (1998). Quo Vadis, Near-Field Optics?. In: García, N., Nieto-Vesperinas, M., Rohrer, H. (eds) Nanoscale Science and Technology. NATO ASI Series, vol 348. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5024-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5024-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6109-4

  • Online ISBN: 978-94-011-5024-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics