Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 348))

  • 259 Accesses

Abstract

Experiments using photons as a probe provide an excellent energy resolution. The wavelength of the light, however, sets a lower limit to the probed area perpendicular to the direction of propagation. This limit is of the order of the wavelength of the light. Scanning probe microscopes, on the other hand, have a superb spatial resolution. The energy of the interaction can only be acquired with modest sensitivity and resolution. Therefore, the combination of photons and local probes might provide the best of the two worlds. In this article we explore the possibilities of combining optical and SPM techniques. Near field optical microscopy using the aperture probe is used to investigate the emission properties of vertical cavity surface emitting laser diodes (VCSEL). Mode patterns put into relation to the topography of the emission area serve to diagnose the performance of the device. In contrast to classical optical microscopy techniques, our method is able to simultaneously decompose lasing transversal modes by their wavelength with lateral superresolution. Similarly, the comparison of the emission location of nanometer sized thin luminescent layers with the shape of the overgrown structure reveals variations of the bandgap and its position. Subtle differences in images obtained with internal and external collection modes provide clues to the diffusion of the charge carriers. Finally scanning force microscope (SFM) is used to detect near field light by a mechanism based on optical modulation of the image force between a semiconducting probe tip and a glass surface due to the surface photo-voltage (SPV). This technique, which has a lateral resolution of better than 70 nm, allows the simultaneous detection of minute optical powers as small as \(0.1pW/\sqrt {Hz}\) in air and of charges. The technique is applied to the measurement of optical and charge gratings of a photorefractive material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Demtroeder, Laser spectroscopy, 2nd ed. (Springer, Berlin; Heidelberg. 1996).

    Google Scholar 

  2. R. Wiesendanger, Scanning probe microscopy and spectroscopy (Cambridge Univ. Press, Cambridge, 1994).

    Book  Google Scholar 

  3. E. H. Singe, “Suggested method for extending microscopic resolution into the ultramicroscopic regime,” Phil. Mag. 6,356 (1928).

    Google Scholar 

  4. J. A. O’Keefe, “Resolving power of visible light,” J. Opt. Soc. Am. A 46 (5), 359 (1956).

    Article  Google Scholar 

  5. E. A. Ash and G. Nichols, “Super resolution aperture scanning microscope,” Nature 237, 510 (1972).

    Article  ADS  Google Scholar 

  6. U. C. Fischer and H. P. Zingsheim, “Submicronic contact imaging with visible light by energy transfer,” Appl. Phys. Lett. 40 (3), 195–197 (1982).

    Article  ADS  Google Scholar 

  7. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with λ/20.” Appl. Phys. Lett. 44,651–653 (1984).

    Article  ADS  Google Scholar 

  8. A. Lewis, M. Isaacson, A. Harootunian, and M. Muray, “Development of a 500 Å resolution light microscope,” Ultra microscopy 13 243–312 (1984).

    Google Scholar 

  9. U. Dilrig, D. W. Pohl, and F. Rohner, “Near-Field Optical-Scanning Microscopy,” J. Appl. Phys. 59 3318–3327 (1986).

    Article  ADS  Google Scholar 

  10. E. Betzig, H. Barshatzky, A. Lewis, M. Isaacson, and K. Lin, “Super-Resolution Imaging with Near Field Scanning Optical Microscopy (NSOM),” Ultramicroscopy 25. 155–163 (1988).

    Article  Google Scholar 

  11. N. F. van Hulst and M. H. P. Moers, “Biological applications of near-field optical microscopy,” IEEE Engineering in Medicine and Biology Magazine 15 (1), 51–58 (1996).

    Article  Google Scholar 

  12. W. M. Duncan, “Near-field scanning optical microscope for microelectronic materials and devices,” Journal of Vacuum Science & Technology A Vacuum Surfaces and Films 14 (3), 1914–1918 (1996).

    Article  ADS  Google Scholar 

  13. D. A. Van den Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Spatially resolved spectral inhomogeneities in small molecular crystals studied by near-field scanning optical microscopy.” J. Phys. Chem. 100 (29), 11843–11849 (1996).

    Article  Google Scholar 

  14. J. Barenz, A. Eska, O. Hollricher, O. Marti. M. Wachter, U. Schöffel, and H. Heinecke,“Near field luminescence measurements on GaInAsP/InP doubleheterostructures at room temperature,” (1997), in preparation.

    Google Scholar 

  15. I. Hörsch, R. Kusche. O. Marti, B. Weigl, and K. J. Ebeling, “Spectrally resolved near-field mode imaging of vertical cavity semiconductor lasers,” J. Appl. Phys. 79 (8 Part 1). 3831–3834 (1996).

    Article  ADS  Google Scholar 

  16. J. D. Pedarnig. M. Specht, and T. W. Hänsch, “Fluorescence Lifetime Variations and Local Spectroscopy in Scanning Near-Field Optical Microscopy,” in Photons and Local Probes, edited by Othmar Marti and Rolf Möller (Kluwer Academic Publishers. Dordrecht. The Netherlands. 1995), Vol. E 300, pp. 151–163.

    Google Scholar 

  17. J. D. Pedarnig, M. Specht. M. Heckl, and T. W. Hänsch, “Scanning Plasmon Near-Field Microscope,” in Near Field Optics. edited by D. W. Pohl and D. Courjon (Kluwer Academic Publishers, Dordrecht. The Netherlands, 1993), Vol. E 242, pp. 273–280.

    Chapter  Google Scholar 

  18. F. Zenhausern, M. P. O’Boyle. and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phvs. Lett. 65 (13). 1623–1625 (1994).

    Article  ADS  Google Scholar 

  19. J. Mertz, M. Hipp, J. Mlynek. and O. Marti, “Optical Near Field Imaging with a Semiconductor Probe Tip.” Appl. Phrs. Lett. 64 2338–2340 (1994).

    Article  ADS  Google Scholar 

  20. M. Hipp, J. Mertz, J. Mlynek, and O. Marti, “Optical Near-Field Imaging by Force Microscopy,” in Photons and Local Probes, edited by Othmar Marti and Rolf Möller (Kluwer Academic Publishers, Dordrecht, Netherlands. 1995), Vol. E 300, pp. 109–122.

    Google Scholar 

  21. N. F. van Hulst, M. H. P. Moers, O. F. J. Noordman, T. Faulkner, F. B. Segerink, K. O. van der Wert, B. G. de Grooth, and B. Bölger. “Operation of a scanning near field optical microscope in reflection in combination with a scanning force microscope. ” in Scanning Probe Microscopies (SPIE. Bellingham, WA 98227, USA, 1992). Vol. 1639, pp. 36–43.

    Chapter  Google Scholar 

  22. R. Toledo-Crow, P. C. Yang, Y. Chen, and M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phvs. Lett. 60 (24). 2957–2959 (1992).

    Article  ADS  Google Scholar 

  23. E. Betzig, P. L. Finn, and J. S. Weiner, “Combined Shear Force and near-field scanning optical microscopy.” Appl. Phvs. Lett. 60 (20). 2484 (1992).

    Article  ADS  Google Scholar 

  24. S. Vieira, “The behaviour and calibration of some piezoelectric ceramics used in STM,” IBM J. Res. Develop. 30 553 (1986).

    Article  Google Scholar 

  25. G. Binnig and D. P. E. Smith. “Single-tube three-dimensional scanner for scanning tunneling microscopy,” Rev. Sei. Instrum. 57 1688 (1986).

    Article  ADS  Google Scholar 

  26. D. W. Pohl and D. Courjon, Near Field Optics (Kluwer Academic Publishers. Dordrecht, 1993).

    Book  Google Scholar 

  27. O. Marti and R. Möller, Photons and Local Probes (Kluwer Scientific Publishers, Dordrecht, 1995).

    Book  Google Scholar 

  28. E. H. K. Stelzer and S. Lindek, “Fundamental reduction of the observation volume in far-field light microscpy by detection orthogonal.” Opt. Comm. 111 .536–547 (1994).

    Article  ADS  Google Scholar 

  29. PI Physik Instrumente, “PZT Model P-730.20,”.

    Google Scholar 

  30. K. J. Ebeling. Integrierte Optoelektronik, 2. Autl. ed. (Springer. Berlin: Heidelberg. 1992).

    Google Scholar 

  31. U. Fiedler and K. J. Ebeling, “Design of VCSEL’s for feedback insensitive data transmission and external cavity active mode-locking.” IEEE J. on Selected Topics in Quantum Electronics 1 (2). 442–450 (1995).

    Article  Google Scholar 

  32. P. K. Hansma, J. P. Cleveland. M. Radmacher, D. A. Walters. P. E. Hillner, M. Bezanilla. M. Fritz, D. Vie, H. G. Hansma. C. B. Prater. J. Massie, L. Fukunaga, J. Gurley. and V. Elings. “Tapping Mode Atomic Force Microscopy in Liquids.” Appl. Phys. Lett. 64 1738–1740 (1994).

    Article  ADS  Google Scholar 

  33. J. P. Spatz. S. Sheiko. M. Möller, R. G. Winkler, and O. Marti. “Forces affecting a substrate in tapping mode.” Nanotechnologv 6 40–44 (1995).

    Article  ADS  Google Scholar 

  34. R. G. Winkler. J. P. Spatz, S. Sheiko, M. Moller. P. Reineker, and O. Marti, “Imaging material properties by resonant tapping-force microscopy: A model investigation.” Physical Review B Condensed Matter 54 (12). 8908–8912 (1996).

    Article  ADS  Google Scholar 

  35. J. Barenz, O. Hollricher. and O. Marti. “An easy-to-use non-optical shear-force distance control for near-field optical microscopes.” Rev. Sci. Instrum. 67 (5), 1912–1916 (1996).

    Article  ADS  Google Scholar 

  36. R. Brunner, A. Bietsch, O. Hollricher. and O. Marti, “Distance Control in Near-Field Optical Microscopy with electrical shear force detection suitable for imaging in liquids,” Rev. Sci. lnstr un. 68 (4), 1769–1772 (1996).

    Article  ADS  Google Scholar 

  37. C. Girard and M. Spajer, “Model for reflection near field optical microscopy,” Appl. Opt. 29 3726 (1990).

    Article  ADS  Google Scholar 

  38. G. Krausch, S. Wegscheider, A. Kirsch, H. Bielefeldt, J. C. Meiners, and J. Mlynek. “Near field microscopy and lithography with uncoated fiber tips: A comparison,” Opt Commun 119 (3–4), 283–288 (1995).

    Article  ADS  Google Scholar 

  39. V. Sandoghdar, S. Wegscheider, G. Krausch, and J. Mlynek, “Reflection scanning near-field optical microscopy with uncoated fiber tips: How good is the resolution really?,” J. Appl. Phys. 81 (6), 2499–2503 (1997).

    Article  ADS  Google Scholar 

  40. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, M. Longmire, and J. Gurley, “An atomic-resolution atomic-force microscope implemented using an optical lever,” J. Appl. Phys. 65 164 (1989).

    Article  ADS  Google Scholar 

  41. G. Meyer and N. M. Amer, “Novel optical approach to atomic force microscopy,” Appl. Phys. Lett. 53 (12), 1045–1047 (1988).

    Article  ADS  Google Scholar 

  42. R. J. Hamers and K. Markert, “Atomically Resolved Carrier Recombination at Sit 111)(7×7) Surfaces,” Phys. Rev. Lett. 64 1051 (1990).

    Article  ADS  Google Scholar 

  43. J. M. R. Weaver and H. K. Wickramasinghe, “Semiconductor characterization by scanning force microscope surface photovoltage microscopy,” J. Vac. Sci. Technol. B B9 (3), 1562–1565 (1991).

    Article  Google Scholar 

  44. M. Nonnenmacher, M. P. O’Boyle, and H. K. Wickramasinghe, “Kelvin Probe Force Microscopy,” Appl. Phys. Lett. 58 2921 (1991).

    Article  ADS  Google Scholar 

  45. W. H. Brattain and J. Bardeen, “Surface properties of germanium,” Bell Syst. Tech. J. 32 1 (1953).

    Google Scholar 

  46. M. H. Hecht, “Photovoltaic effects in photoemssion studies of Schottky barrier formation,” J. Vac. Sci. Technol B 8 1018 (1990).

    Article  ADS  Google Scholar 

  47. J. Mertz, O. Marti. and J. Mlynek, “Regulation of a Microcantilever Response by Active Control,” Appl. Phys. Lett. 62 2344–2346 (1993).

    Article  ADS  Google Scholar 

  48. H.-J. Eichler, P. Guenter, and D. W. Pohl, Laser-induced dynamic gratings (Springer, Berlin; Heidelberg; New York; Tokyo, 1986).

    Google Scholar 

  49. P. Guenter, Electro-optic and photorefractive materials (Springer, Berlin; Heidelberg, 1987).

    Book  Google Scholar 

  50. P. Guenter, Fundamental phenomena (Berlin; Heidelberg, 1988).

    Google Scholar 

  51. P. Guenter, Survey of applications (Berlin; Heidelberg, 1989).

    Google Scholar 

  52. B. D. Terris, J. E. Stern, D. Rugar, and H. J. Mamin, “Contact electrification using force’microscopy.,” Physical Review Letters 63 (24), 2669–72 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marti, O. et al. (1998). Photons and Local Probes. In: García, N., Nieto-Vesperinas, M., Rohrer, H. (eds) Nanoscale Science and Technology. NATO ASI Series, vol 348. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5024-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5024-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6109-4

  • Online ISBN: 978-94-011-5024-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics