Skip to main content

Role of the Fibrinolytic and the Coagulation System in the Formation and Disorders of Blood Vessels

  • Chapter
Book cover Multiple Risk Factors in Cardiovascular Disease

Part of the book series: Medical Science Symposia Series ((MSSS,volume 12))

  • 267 Accesses

Abstract

The blood coagulation, the fibrinolytic (or plasminogen/plasmin), and matrix metalloproteinase systems constitute families of proteinases that have been extensively characterized at the structural level. Previous biochemical, genetic, and epidemiologic studies suggested that they determine the balance between the formation and dissolution of blood clots and contribute to the pathogenesis of various cardiovascular disorders such as thrombosis, atherosclerosis, and restenosis. Two recently developed technologies, gene targeting and gene transfer, that allow manipulation of the genetic balance of these proteinase systems in a controllable manner in vivo have allowed more definitive elucidation of the biological role of these systems. This review summarizes the insights that have been obtained from the gene targeting studies and discusses the use of adenovirus-mediated transfer of fibrinolytic genes to study and possibly to develop novel strategies for the treatment of restenosis and thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edgington TS, Mackman N, Brand K, Ruf W. The structural biology of expression and function of tissue factor. Thromb Haemost 1991; 66 (1): 67–79.

    PubMed  CAS  Google Scholar 

  2. Furie B, Furie BC. The molecular basis of blood coagulation. Cell 1988; 53 (4): 505–18.

    Article  PubMed  CAS  Google Scholar 

  3. Collen D, Lijnen HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 1991; 78 (12): 3114–24.

    PubMed  CAS  Google Scholar 

  4. Schneiderman J, Loskutoff DJ. Plasminogen activator inhibitors. Trends Cardiovasc Med 1991; 1: 99–102.

    Article  PubMed  CAS  Google Scholar 

  5. Vassalli JD. The urokinase receptor. Fibrinolysis 1994; 8 (Suppl.1): 172–81.

    CAS  Google Scholar 

  6. Murphy G. Matrix metalloproteinases and their inhibitors. Acta Orthop Scand (Suppl 256) 1995; 66: 55–60.

    Google Scholar 

  7. Murphy G, Atkinson S, Ward R, Gavrilovic J, Reynolds JJ. The role of plasminogen activators in the regulation of connective tissue metalloproteinases. Ann N Y Acad Sci 1992; 667: 1–12.

    Article  PubMed  CAS  Google Scholar 

  8. Risau W. Differentiation of endothelium. FASEB J 1995; 9 (10): 926–33.

    PubMed  CAS  Google Scholar 

  9. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single vascular endothelial growth factor allele. Nature 1996; 380: 435–39.

    Article  PubMed  CAS  Google Scholar 

  10. Carmeliet P, Mackman N, Moons L, et al. Role of tissue factor in embryonic blood vessel development. Nature 1996; 383: 73–75.

    Article  PubMed  CAS  Google Scholar 

  11. Bugge TH, Xiao Q, Kombrinck KW, et al. Fatal embryonic bleeding events in mice lacking tissue factor, the cell-associated initiator of blood coagulation. Proc Natl Acad Sci USA 1996; 93 (13): 6258–63.

    Article  PubMed  CAS  Google Scholar 

  12. Toomey JR, Kratzer KE, Lasky NM, Stanton JJ, Broze GJ, Jr. Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood 1996; 88 (5): 1583–87.

    PubMed  CAS  Google Scholar 

  13. Toomey JR, Kratzer KE, Lasky NM, Stanton JJ, Broze GJ, Jr. Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood 1996; 88 (5): 1583–87.

    PubMed  CAS  Google Scholar 

  14. Cui J, O’Shea KS, Purkayastha A, Saunders TL, Ginsburg D. Fatal haemorrhage and incomplete block to embryogenesis in mice lacking coagulation factor V. Nature 1996; 384 (6604): 66–68.

    Article  PubMed  CAS  Google Scholar 

  15. Connolly AJ, Ishihara H, Kahn ML, Farese RV, Jr., Coughlin SR. Role of the thrombin receptor in development and evidence for a second receptor. Nature 1996; 381 (6582): 516–19.

    Article  PubMed  CAS  Google Scholar 

  16. Bi L, Lawler AM, Antonarakis SE, High KA, Gearhart JD, Kazazian HH, Jr. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet 1995; 10 (1): 119–21.

    Article  PubMed  CAS  Google Scholar 

  17. Suh TT, Holmback K, Jensen NJ, et al. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev 1995; 9 (16): 2020–33.

    Article  PubMed  CAS  Google Scholar 

  18. Aoki N. Hemostasis associated with abnormalities of fibrinolysis. Blood Rev 1989; 3 (1): 11–17.

    Article  PubMed  CAS  Google Scholar 

  19. Carmeliet P, Schoonjans L, Kieckens L, et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 1994; 368 (6470): 419–24.

    Article  PubMed  CAS  Google Scholar 

  20. Ploplis VA, Carmeliet P, Vazirzadeh S, et al. Effects of disruption of the plasminogen gene on thrombosis, growth, and health in mice. Circulation 1995; 92 (9): 2585–93.

    Article  PubMed  CAS  Google Scholar 

  21. Bugge TH, Flick MJ, Daugherty CC, Degen JL. Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes Dev 1995; 9 (7): 794–807.

    Article  PubMed  CAS  Google Scholar 

  22. Bugge TH, Flick MJ, Danton MJ, et al. Urokinase-type plasminogen activator is effective in fibrin clearance in the absence of its receptor or tissue-type plasminogen activator. Proc Natl Acad Sci USA 1996; 93 (12): 5899–904.

    Article  PubMed  CAS  Google Scholar 

  23. Romer J, Bugge TH, Pyke C, et al. Impaired wound healing in mice with a disrupted plasminogen gene. Nat Med 1996; 2 (3): 287–92.

    Article  PubMed  CAS  Google Scholar 

  24. Kitching AR, Holdsworth SR, Ploplis V, et al. Plasminogen and plasminogen activators protect against renal injury in crescentic glomerulonephritis. J Exp Med 1997; 5: 963–68.

    Article  Google Scholar 

  25. Carmeliet P, Moons L, Ploplis V, Plow EF, Collen D. Impaired arterial neointima formation in mice with disruption of the plasminogen gene. J Clin Invest 1997; 99: 200–208.

    Article  PubMed  CAS  Google Scholar 

  26. Carmeliet P, Kieckens L, Schoonjans L, et al. Plasminogen activator inhibitor-1 gene-deficient mice. I. Generation by homologous recombination and characterization. J Clin Invest 1993; 92: 2746–55.

    Article  PubMed  CAS  Google Scholar 

  27. Carmeliet P, Stassen JM, Schoonjans L, et al. Plasminogen activator inhibitor-1 gene-deficient mice. II. Effects on hemostasis, thrombosis and thrombolysis. J Clin Invest 1993; 92: 2756–60.

    Article  PubMed  CAS  Google Scholar 

  28. Carmeliet P, Bouche A, De Clercq C, et al. Biological effects of disruption of the tissue-type plasminogen activator, urokinase-type plasminogen activator, and plasminogen activator inhibitor-1 genes in mice. Ann N Y Acad Sci 1995; 748: 367–81.

    Article  PubMed  CAS  Google Scholar 

  29. Carmeliet P, Stassen JM, Meidell R, Cotten D, Gerard R. Adenovirus-mediated gene transfer of rt-PA restores thrombolysis in t-PA deficient mice. Blood 1997; 90 (4): 1527–34.

    PubMed  CAS  Google Scholar 

  30. Simpson AJ, Booth NA, Moore NR, Bennett B. Distribution of plasminogen activator inhibitor (PAI-1) in tissues. J Clin Pathol 1991; 44 (2): 139–43.

    Article  PubMed  CAS  Google Scholar 

  31. Clowes AW, Clowes MM, Au YP, Reidy MA, Belin D. Smooth muscle cells express urokinase during mitogenesis and tissue-type plasminogen activator during migration in injured rat carotid artery. Circ Res 1990; 67 (1): 61–67.

    Article  PubMed  CAS  Google Scholar 

  32. Carmeliet P, Moons L, Stassen JM, et al. A model for arterial neointima formation using perivascular electric injury in mice. Am J Pathol 1997; 150: 761–77.

    PubMed  CAS  Google Scholar 

  33. Carmeliet P, Moons L, Stassen JM, et al. A model for arterial neointima formation using perivascular electric injury in mice. Am J Pathol 1997; 150: 761–77.

    PubMed  CAS  Google Scholar 

  34. Carmeliet P, Moons L, Dewerchin M, et al. Urokinase receptor independent role of the urokinase-type plasminogen activator during vascular wound healing. J Cell Biol (under revision).

    Google Scholar 

  35. Carmeliet P, Moons L, Lijnen R, et al. Inhibitory role of plasminogen activator inhibitor-l in arterial wound healing and neointima formation. A gene targeting and gene transfer study in mice. Circulation 1997; in press.

    Google Scholar 

  36. Stefansson S, Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta3 binding to vitronectin. Nature 1996; 383 (6599): 441–43.

    Article  PubMed  CAS  Google Scholar 

  37. Shi C, Russell ME, Bianchi C, Newell JB, Haber E. Murine model of accelerated transplant arteriosclerosis. Circ Res 1994; 75 (2): 199–207.

    Article  PubMed  CAS  Google Scholar 

  38. Schneiderman J, Sawdey MS, Keeton MR, et al. Increased type 1 plasminogen activator inhibitor gene expression in atherosclerotic human arteries. Proc Natl Acad Sci USA 1992; 89 (15): 6998–7002.

    Article  PubMed  CAS  Google Scholar 

  39. Wiman B. Plasminogen activator inhibitor 1(PAI-1) in plasma: Its role in thrombotic disease. Thromb Haemost 1995; 74 (1): 71–76.

    CAS  Google Scholar 

  40. Hamsten A, Eriksson P. Fibrinolysis and atherosclerosis: An update. Fibrinolysis 1994; 8 (Suppl.l): 253–62.

    Article  CAS  Google Scholar 

  41. Lupu F, Heim DA, Bachmann F, Hurni M, Kakkar VV, Kruithof EK. Plasminogen activator expression in human atherosclerotic lesions. Arterioscler Thromb Vasc Biol 1995; 15 (9): 1444–55.

    Article  PubMed  CAS  Google Scholar 

  42. Schneiderman J, Bordin GM, Engelberg I, et al. Expression of fibrinolytic genes in atherosclerotic abdominal aortic aneurysm wall. A possible mechanism for aneurysm expansion. J Clin Invest 1995; 96 (1): 639–45.

    Article  PubMed  CAS  Google Scholar 

  43. Carmeliet P, Moons L, Lijnen R, et al. Urokinase-generated plasmin induces atherosclerotic aneurysm formation via activation of matrix malloproteinases. Nature Genetics 1997; under revision.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carmeliet, P., Collen, D. (1998). Role of the Fibrinolytic and the Coagulation System in the Formation and Disorders of Blood Vessels. In: Gotto, A.M., Lenfant, C., Paoletti, R., Catapano, A.L., Jackson, A.S. (eds) Multiple Risk Factors in Cardiovascular Disease. Medical Science Symposia Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5022-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5022-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6108-7

  • Online ISBN: 978-94-011-5022-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics