Skip to main content

Effect of Statins Beyond Lowering Cholesterol: Where Do We Stand?

  • Chapter
  • 265 Accesses

Part of the book series: Medical Science Symposia Series ((MSSS,volume 12))

Abstract

The relation between elevated plasma cholesterol levels and risk for coronary heart disease (CHD) has been established by numerous large-scale epidemiological trials [1]. Several clinical trials have firmly established that aggressive manipulation and normalization of elevated total and low-density lipoprotein (LDL) cholesterol by pharmacological means reduce both the progression of atherosclerosis and the incidence of coronary events [2–4]. A number of cholesterol lowering drugs are currently available for human use [2,5]. In the last decade, a new class of agents which specifically inhibits 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate limiting enzyme in cholesterol biosynthesis, has been developed [6]. Six HMG-CoA reductase inhibitors (statins) are available for clinical use: lovastatin, cerivastatin, pravastatin, simvastatin, atorvastatin, and fluvastatin [7–11]. The available clinical data for HMG-CoA reductase inhibitors demonstrate their efficacy and safety in treating hypercholesterolemia and improving long-term morbidity and mortality related to CHD [12]. It has been assumed that, in atherosclerotic patients, any beneficial effect of statins is linked to their hypolipidemic properties, suggesting that this is the main mechanism for preventing the development of atherosclerosis [13,14].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gotto AM Jr. The case for aggressive lipid regulation. Hospital Practice 1997;32(2):145–56.

    PubMed  Google Scholar 

  2. National Cholesterol Education Program. Second report of the expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel II). Circulation 1994; 89: 1329–445.

    Google Scholar 

  3. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–89.

    Google Scholar 

  4. Brown BG, Zhao X-Q, Sacco DE, Albers JJ. Lipid lowering and plaque regression. New insights into prevention of plaque disruption and clinical events in coronary disease. Circulation 1993; 87: 1781–91.

    Article  PubMed  CAS  Google Scholar 

  5. Havel RI, Rapaport E. Management of primary hyperlipidemia. New Engl J Med 1995; 332: 1491–98.

    Article  PubMed  CAS  Google Scholar 

  6. Endo A. The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res 1992; 33: 1569–82.

    PubMed  CAS  Google Scholar 

  7. Alberts AW, Chen J, Kuron G, et al. Mevinolin: A highly potent competitive inhibitor of 3hydroxy-3-methylglutaryl coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci USA 1980; 77: 3957–61.

    Article  PubMed  CAS  Google Scholar 

  8. Tsujita Y, Kuroda M, Shimada Y. CS-514, a competitive inhibitor of 3-hydroxy-3methylglutaryl coenzyme A reductase: Tissue selective inhibition of sterol synthesis and hypolipidemic effect on various animal species. Biochim Biophys Acta 1986; 877: 50–60.

    Article  PubMed  CAS  Google Scholar 

  9. Stokker GE, Hoffman WF, Alberts AW et al. 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors. 1. Structural modifications of 5-substituted 3,5-dihydroxypentanoic acids and their lactone derivatives. J Med Chem 1985; 28: 347–58.

    Article  PubMed  CAS  Google Scholar 

  10. Kathawala FG. HMG-CoA reductase inhibitors: An exciting development in the treatment of hyperlipoproteinemia. Med Res Rev 1991; 11: 121–46.

    PubMed  CAS  Google Scholar 

  11. Bakker-Arkema RG, Davidsen MH, Goldstein RG, et al. Efficacy and safety of a new HMGCoA reductase inhibitor, atorvastatin, in patients with hypertriglyceridemia. JAMA 1996; 275: 128–33.

    Article  PubMed  CAS  Google Scholar 

  12. Nash DT. Meeting national cholesterol education goals in clinical practice-A comparison of lovastatin and fluvastatin in primary prevention. Am J Cardiol 1996; 78 (Suppl 6A): 26–31.

    Article  PubMed  CAS  Google Scholar 

  13. Hunninghake DB. HMG-CoA reductase inhibitors. Curr Opin Lipidol 1992; 3: 22–28.

    Article  CAS  Google Scholar 

  14. Feussner G. HMG-CoA reductase inhibitors. Curr Opin Lipidol 1994; 5: 59–68.

    Article  PubMed  CAS  Google Scholar 

  15. Grunler J, Ericsson J, Dallner G. Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta 1994; 1212: 259–77.

    Article  PubMed  CAS  Google Scholar 

  16. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990; 343: 425–30.

    Article  PubMed  CAS  Google Scholar 

  17. Bernini F, Didoni G, Bonfadini G, Bellosta S, Fumagalli R. Requirement for mevalonate in acetylated LDL induction of cholesterol esterification in macrophages. Atherosclerosis 1993; 104: 19–26.

    Article  PubMed  CAS  Google Scholar 

  18. Corsini A, Mazzotti M, Raiteri M, et al. Relationship between mevalonate pathway and arterial myocyte proliferation: In vitro studies with inhibitors of HMG-CoA reductase. Atherosclerosis 1993; 101: 117–25.

    Article  PubMed  CAS  Google Scholar 

  19. Soma MR, Donetti E, Parolini C, et al. HMG-CoA reductase inhibitors: In vivo effects on carotid intimai thickening in normocholesterolemic rabbits. Arterioscl Thromb 1993; 13: 571–78.

    Article  PubMed  CAS  Google Scholar 

  20. Zhu BQ, Sievers RE, Sun YP, Isenberg WM, Parmley WW. Effect of lovastatin on suppression and regression of atherosclerosis in lipid-fed rabbits. J Cardiovasc Pharmacol 1992; 19: 246–55.

    Article  PubMed  CAS  Google Scholar 

  21. Gellman J, Ezekowitz MD, Sarembock IJ, et al. Effect of lovastatin on intimai hyperplasia after balloon angioplasty. A study in an atherosclerotic hypercholesterolemic rabbit. J Am Coll Cardiol 1991; 17: 251–59.

    Article  PubMed  CAS  Google Scholar 

  22. Bocan TMA, Mazur MJ, Mueller SB, et al. Antiatherosclerotic activity of inhibitors of 3hydroxy-3-methylglutaryl coenzyme A reductase in cholesterol-fed rabbits: A biochemical and morphological evaluation. Atherosclerosis 1994; 111: 127–42.

    Article  PubMed  CAS  Google Scholar 

  23. Ross R The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993; 362: 801–9.

    Article  PubMed  CAS  Google Scholar 

  24. Glomset JA, Farnsworth CC. Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Ann Rev Cell Biol 1994; 10: 181–205.

    Article  PubMed  CAS  Google Scholar 

  25. Massy ZA, Keane WF, Kasiske BL. Inhibition of the mevalonate pathway: Benefits beyond cholesterol reduction? Lancet 1996; 347: 102–3.

    Article  PubMed  CAS  Google Scholar 

  26. Soma MR, Baetta R, De Renzis MR, et al. In vivo enhanced antitumor activity of carmustine [N,N’-bis(2-chloroethyl)-N-nitrosourea] by simvastatin. Cancer Res 1995; 55: 597–602.

    PubMed  CAS  Google Scholar 

  27. Gotto AM, Jr. Dyslipidemia and atherosclerosis. A forecast of pharmaceutical approaches. Circulation 1993;87(Supp1.III):III-54-III-59.

    Google Scholar 

  28. Corsini A, Bernini F, Quarato P, et al. Non-lipid-related effects of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Cardiology 1996; 87: 458–68.

    Article  PubMed  CAS  Google Scholar 

  29. Raiteri M, Amaboldi L, McGeady P, et al. Pharmacological control of mevalonate pathway: effect on arterial smooth muscle cell proliferation. J Pharmacol Exp Ther 1997; 281: 1144–53.

    PubMed  CAS  Google Scholar 

  30. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol 1971; 50: 172–86.

    Article  PubMed  CAS  Google Scholar 

  31. Corsini A, Raiteri M, Soma MR, Fumagalli R, Paoletti R Simvastatin but not pravastatin inhibits the proliferation of rat aorta myocytes. Pharm Res 1991; 23: 173–80.

    Article  CAS  Google Scholar 

  32. Fisher RA, Yates F. Statistical Tables for Biological, Agricultural and Medical Research. 4th Ed. Edinburgh: Oliver and Boyd, 1953: 60.

    Google Scholar 

  33. Naito M, Hayashi T, Kuzuya M, Funaki C, Asai K, Kuzuya F. Effects of fibrinogen and fibrin on the migration of vascular smooth muscle cells in vitro. Atherosclerosis 1990; 83: 9–14.

    Article  PubMed  CAS  Google Scholar 

  34. Corsini A, Quarato P, Raiteri M, et al. Effect of nifedipine-atenolol association on arterial myocyte migration and proliferation. Pharm Res 1993; 27: 299–307.

    Article  CAS  Google Scholar 

  35. Chen HW. Role of cholesterol metabolism in cell growth. Fedn Proc 1984; 43: 126–30.

    CAS  Google Scholar 

  36. Maltese WA. Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J 1990; 4: 3319–28.

    PubMed  CAS  Google Scholar 

  37. Glomset JA, Gelb MH, Farnsworth CC. Prenyl proteins in eukaryotic cells: A new type of membrane anchor. Trends Biochem Sci 1990; 15: 139–42.

    Article  PubMed  CAS  Google Scholar 

  38. Farnsworth CC, Wolda SL, Gelb MH, Glomset JA. Human lamin B contains a famesylated cysteine residue. J Biol Chem 1989; 264: 20422–29.

    PubMed  CAS  Google Scholar 

  39. Casey PJ, Solsky PA, Der CJ, Buss JE. p2lras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci USA 1989; 86: 8323–27.

    Article  PubMed  CAS  Google Scholar 

  40. Hirai A, Nakamura S, Noguchi Y, et al. Geranylgeranylated Rho small GTPase(s) are essential for the degradation of p27kip1 so and facilitate the progression from G1 to S phase in growth-stimulated rat FRTL-5 cells. J Biol Chem 1997; 272: 13–16.

    Article  PubMed  CAS  Google Scholar 

  41. Scott W. Hydrophilicity and the differential pharmacology of pravastatin. In: Wood C, editor. Lipid management: pravastatin and the differential pharmacology of HMG-CoA reductase inhibitors. London Round Table Series n. 16: Royal Society of Medicine Service. 1989: 17–25.

    Google Scholar 

  42. Komai T, Shigehara E, Tokui T, et al. Carrier-mediated uptake of pravastatin by rat hepatocytes in primary culture. Biochem Pharmacol 1992; 43: 667–70.

    Article  PubMed  CAS  Google Scholar 

  43. Bandoh T, Mitani H, Niihashi M, et al. Inhibitory effect of fluvastatin at doses insufficient to lower serum lipids on the catheter-induced thickening of intima in rabbit femoral artery. Eur J Pharmacol 1996; 315: 37–42.

    Article  PubMed  CAS  Google Scholar 

  44. Soma MR, Parolini C, Donetti E, Fumagalli R, Paoletti R. Inhibition of isoprenoid biosynthesis and arterial smooth muscle cell proliferation. J Cardiovasc Pharmacol 1995; 25: S20–S24.

    PubMed  CAS  Google Scholar 

  45. Dain JG, Fu E, Gorski J, Nicoletti J, Scallen TJ. Biotransformation of fluvastatin sodium in humans. Drug Met Disp 1993; 21: 567–72.

    CAS  Google Scholar 

  46. Tse FLS, Jaffe JM, Troendle A. Pharmacokinetics of fluvastatin after single and multiple doses of normal volunteers. J Clin Pharmacol 1992; 32: 630–38.

    PubMed  CAS  Google Scholar 

  47. Pentikainen P, Saraheimo M, Schwartz J, et al. Comparative phannacokinetics of lovastatin, simvastatin and pravastatin in humans. J Clin Pharmacol 1992; 32: 136–40.

    PubMed  CAS  Google Scholar 

  48. Isner JM, Kearney M, Bauters C, et al. Use of human tissue specimens obtained by directional atherectomy to study restenosis. Trends Cardiovasc Med 1994; 4: 213–21.

    Article  PubMed  CAS  Google Scholar 

  49. Sandset PM, Lund H, Abildgaard U, Ose L. Treatment with hydroxymethylglutaryl-coenzyme A reductase inhibitors in hypercholesterolemia induces changes in the components of the extrinsic coagulation system. Arterioscl Thromb 1991; 11: 138–45.

    Article  PubMed  CAS  Google Scholar 

  50. Colli S, Eligini S, Lalli M, Camera M, Paoletti R, Tremoli E. Vastatins inhibit tissue factor in cultured human macrophages. A novel mechanism of protection against atherothrombosis. Arterioscl Thromb Vasc Biol 1997; 17: 265–72.

    Article  PubMed  CAS  Google Scholar 

  51. Kleinveld HA, Demacker PNM, De Haan AFJ, Stalenhoef AFH. Decreased in vitro oxidizability of low-density lipoprotein in hypercholesterolemic patients treated with 3hydroxy-3-methylglutaryl-CoA reductase inhibitors. Eur J Clin Invest 1993; 23: 289–95.

    Article  PubMed  CAS  Google Scholar 

  52. Hussein O, Schlezinger S, Rosenblat M, Kheidar S, Aviram M. Reduced susceptibility of low density lipoprotein (LDL) to lipid peroxidation after fluvastatin therapy is associated with the hypocholesterolemic effect of the drug and its binding to the LDL. Atherosclerosis 1997; 128: 11–18.

    Article  PubMed  CAS  Google Scholar 

  53. Kobashigawa JA, Katznelson S, Hillel L, Johnson JA, Yeatman L, Wang XM. Effect of pravastatin on outcomes after cardiac transplantation. New Engl J Med 1995; 333: 621–27.

    Article  PubMed  CAS  Google Scholar 

  54. Bernini F, Scurati N, Bonfadini G, Fumagalli R. HMG-CoA reductase inhibitors reduce acetyl LDL endocytosis in mouse peritoneal macrophages. Arterioscl Thromb Vasc Biol 1996; 15: 1352–58.

    Article  Google Scholar 

  55. Umetani N, Kanayama Y, Okamura M, Negoro N, Takeda T. Lovastatin inhibits gene expression of type-I scavenger receptor in THP-1 human macrophages. Biochim Biophys Acta 1996; 1303: 199–206.

    Article  PubMed  Google Scholar 

  56. La Ville A, Moshy R, Turner PR, Miller NE, Lewis B. Inhibition of cholesterol synthesis reduces low density lipoprotein apoprotein B production without decreasing very low density lipoprotein apoprotein B synthesis in rabbits. Biochem J 1984; 218: 321–23.

    Google Scholar 

  57. Giroux LM, Davignon J, Naruzewicz M. Simvastatin inhibits the oxidation of low-density lipoproteins by activated human monocyte-derived macrophages. Biochim Biophys Acta 1993; 1165: 335–38.

    Article  PubMed  CAS  Google Scholar 

  58. Scandinavian Simvastatin Survival Study Group. Baseline serum cholesterol and treatment effect in the Scandinavian Simvastatin Survival Study (4S). Lancet 1995: 345: 1274–75.

    Google Scholar 

  59. Herd JA, Ballantyne CM, Farmer JA, et al. Effects of fluvastatin on coronary atherosclerosis in patients with mild to moderate cholesterol elevations (Lipoproteins and Coronary Atherosclerosis Study [LCAS]). Am J Cardiol 1997; 80: 278–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Quarato, P., Ferri, N., Arnaboldi, L., Fumagalli, R., Paoletti, R., Corsini, A. (1998). Effect of Statins Beyond Lowering Cholesterol: Where Do We Stand?. In: Gotto, A.M., Lenfant, C., Paoletti, R., Catapano, A.L., Jackson, A.S. (eds) Multiple Risk Factors in Cardiovascular Disease. Medical Science Symposia Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5022-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5022-4_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6108-7

  • Online ISBN: 978-94-011-5022-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics