Skip to main content

Part of the book series: Medical Science Symposia Series ((MSSS,volume 12))

  • 269 Accesses

Abstract

In the last decade a new class of agents which specifically inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate limiting enzyme in cholesterol biosynthesis, was developed [1]. A number of clinical studies have demonstrated that HMG-CoA reductase inhibitors (vastatins) can induce regression of vascular atherosclerosis [2–4], decrease the incidence of coronary heart disease (CHD) [2,3], and improve survival in CHD patients [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Endo A. The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res 1992; 33: 1569–82.

    PubMed  CAS  Google Scholar 

  2. Brown BG, Zhao X-Q, Sacco DE, Albers JJ. Lipid lowering and plaque regression. New insights into prevention of plaque disruption and clinical events in coronary disease. Circulation 1993; 87: 1781–91.

    Article  PubMed  CAS  Google Scholar 

  3. Jukema JW, Bruschke AVG, van Boven AJ, et al. Effects of lipid lowering by pravastatin on progression and regression of coronary artery disease in symptomatic men with normal to moderately elevated serum cholesterol levels. The Regression Growth Evaluation Statin Study (REGRESS). Circulation 1995; 91: 2528–40.

    Article  PubMed  CAS  Google Scholar 

  4. MAAS Investigators. Effect of simvastatin on coronary atheroma: The Multicentre Anti-Atheroma Study (MAAS). Lancet 1994; 344: 633–38.

    Article  Google Scholar 

  5. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–89.

    Google Scholar 

  6. Hunninghake DB. HMG-CoA reductase inhibitors. Curr Opin Lipidol 1992; 3: 22–28.

    Article  CAS  Google Scholar 

  7. Feussner G. HMG-CoA reductase inhibitors. Curr Opin Lipidol 1994; 5: 59–68

    Article  PubMed  CAS  Google Scholar 

  8. Grunler J, Ericsson J, Dallner G. Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta 1994; 1212: 259–77.

    Article  PubMed  CAS  Google Scholar 

  9. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature 1990;343:425–30.

    Article  PubMed  CAS  Google Scholar 

  10. Bernini F, Didoni G, Bonfadini G, Bellosta S, Fumagalli R. Requirement for mevalonate in acetylated LDL induction of cholesterol esterification in macrophages. Atherosclerosis 1993; 104: 19–26.

    Article  PubMed  CAS  Google Scholar 

  11. Corsini A, Mazzotti M, Raiteri M, et al. Relationship between mevalonate pathway and arterial myocyte proliferation: In vitro studies with inhibitors of HMG-CoA reductase. Atherosclerosis 1993; 101: 117–25.

    Article  PubMed  CAS  Google Scholar 

  12. Maltese WA. Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J 1990; 4: 3319–28.

    PubMed  CAS  Google Scholar 

  13. Casey PJ. Biochemistry of protein prenylation. J Lipid Res 1992; 33: 1731–40.

    PubMed  CAS  Google Scholar 

  14. Casey PJ. Biochemistry of protein prenylation. J Lipid Res 1992; 33: 1731–40.

    PubMed  CAS  Google Scholar 

  15. Corsini A, Maggi FM, Catapano AL. Pharmacology of competitive inhibitors of HMG-CoA reductase. Pharm Res 1995; 31: 9–27.

    Article  CAS  Google Scholar 

  16. Soma MR, Donetti E, Parolini C, et al. HMG-CoA reductase inhibitors: In vivo effects on carotid intimai thickening in normocholesterolemic rabbits. Arterioscl Thromb 1993; 13: 571–78.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu BQ, Sievers RE, Sun YP, Isenberg WM, Parmley WW. Effect of lovastatin on suppression and regression of atherosclerosis in lipid-fed rabbits. J Cardiovasc Pharmacol 1992; 19: 246–55.

    Article  PubMed  CAS  Google Scholar 

  18. Gellman J, Ezekowitz MD, Sarembock IJ, et al. Effect of lovastatin on intimal hyperplasia after balloon angioplasty. A study in an atherosclerotic hypercholesterolemic rabbit. J Am Coll Cardiol 1991; 17: 251–59.

    Article  PubMed  CAS  Google Scholar 

  19. Bocan TMA, Mazur MJ, Mueller SB, et al. Antiatherosclerotic activity of inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase in cholesterol-fed rabbits: a biochemical and morphological evaluation. Atherosclerosis 1994; 111: 127–42.

    Article  PubMed  CAS  Google Scholar 

  20. Brown MS, Goldstein JL, Krieger M, Ho YK, Anderson RGW. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J Cell Biol 1979; 82: 597–613.

    Article  PubMed  CAS  Google Scholar 

  21. Ross R The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993; 362: 801–9.

    Article  PubMed  CAS  Google Scholar 

  22. Sliskovic DR, White AD. Therapeutic potential of ACAT inhibitors as lipid lowering and anti-atherosclerotic agents. Trends Pharmacol Sci 1991; 12: 194–99.

    Article  PubMed  CAS  Google Scholar 

  23. Goldstein JL, Brown MS, Ho YK, Innerarity TL, Mahley RW. Cholesteryl ester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hypercholesterolemic canine b-very low density lipoproteins. J Biol Chem 1980; 255: 1839–48.

    PubMed  CAS  Google Scholar 

  24. Bernie F, Catapano AL, Corsini A, Fumagalli R, Paoletti R. Effects of calcium antagonists on lipids and atherosclerosis. Am J Cardiol 1989;64:129I–134I.

    Article  Google Scholar 

  25. Liscum L, Faust JR The intracellular transport of low density lipoprotein-derived cholesterol is inhibited in Chinese hamster ovary cells cultured with 3-b-[2-(diethylamino)ethoxy]androst-5-en-17-one. J Biol Chem 1989; 264: 11796–806.

    PubMed  CAS  Google Scholar 

  26. Butler JD, Blanchette-Mackie J, Goldin E, et al. Progesterone blocks cholesterol translocation from lysosomes. J Biol Chem 1992; 267: 23797–805.

    PubMed  CAS  Google Scholar 

  27. Bottalico LA, Wager RE, Agellon LB, Assoian RK, Tabas I. Transforming growth factor-β 1 inhibits scavenger receptor activity in THP-1 human macrophages. J Biol Chem 1991; 266: 22866–71.

    PubMed  CAS  Google Scholar 

  28. Geng Y-J, Hansson GJ. Interferon-τ inhibts scavenger receptor expression and foam cell formation in human monocyte-derived macrophages. J Clin Invest 1992; 89: 1322–30.

    Article  PubMed  CAS  Google Scholar 

  29. Xu X-X, Tabas I. Lipoprotein activate acyl-coenzyme A: cholesterol acyltransferase in macrophages only after cellular cholesterol pools are expanded to a critical threshold level. J Biol Chem 1991; 266: 17040–48.

    PubMed  CAS  Google Scholar 

  30. Kempen HJM, Vermeer M, de Wit E, Havekes LM. Vastatins inhibit cholesterol ester accumulation in human monocyte-derived macrophages. Arterioscl Thromb 1991; 11: 146–53.

    Article  PubMed  CAS  Google Scholar 

  31. Bernie F, Didoni G, Bonfadini G, Bellosta S, Fumagalli R. Requirement for mevalonate in acetylated LDL induction of cholesterol esterification in macrophages. Atherosclerosis 1993; 104: 19–26.

    Article  Google Scholar 

  32. Bernie F, Scurati N, Bonfadini G, Fumagalli R HMG-CoA reductase inhibitors reduce acetyl LDL endocytosis in mouse peritoneal macrophages. Arterioscl Thromb Vasc Biol 1995; 15: 1352–58.

    Article  Google Scholar 

  33. Wissler RW. Update on the pathogenesis of atherosclerosis. Am J Med 1991;91(Supp1.1B): 1B–3S–1B–9S

    Google Scholar 

  34. Schwartz CJ, Valente AJ, Sprague EA. A modern view of atherogenesis. Am J Cardiol 1993; 71:9B–14B.

    Article  PubMed  CAS  Google Scholar 

  35. Ip JH, Fuster V, Badimon L, Badimon J, Chesebro JH. Syndromes of accelerated atherosclerosis: Role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol 1990; 15: 1667–87.

    Article  PubMed  CAS  Google Scholar 

  36. Soma MR, Parolin C, Donetti E, Fumagalli R, Paoletti R Inhibition of isoprenoid biosynthesis and arterial smooth muscle cell proliferation. J Cardiovasc Pharmacol 1995; 25 (Suppl.4): S20–S24.

    PubMed  CAS  Google Scholar 

  37. Chen HW. Role of cholesterol metabolism in cell growth. Fed Proc 1984; 43: 126–30.

    PubMed  CAS  Google Scholar 

  38. Casey PJ, Moomaw JF, Mang FL, Higgins JB, Thissen JA. Prenylation and G protein signaling. In: Bardin CW (editor). Recent Progress in Hormone Research. Vol. 49 San Diego: Academic Press Inc., 1994: 215–33.

    Google Scholar 

  39. Farnsworth CC, Gelb MH, Glomset JA. Identification of geranyigeranyl-modified proteins in HeLa cells. Science 1990; 247: 320–22.

    Article  PubMed  CAS  Google Scholar 

  40. Farnsworth CC, Wolda SL, Gelb MH, Glomset JA. Human lamin B contains a famesylated cysteine residue. J Biol Chem 1989; 264: 20422–29.

    PubMed  CAS  Google Scholar 

  41. Casey PJ, Soisky PA, Der CJ, Buss JE. p2lras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci USA 1989; 86: 8323–27.

    Article  PubMed  CAS  Google Scholar 

  42. Glomset JA, Farnsworth CC. Role of protein modification reactions in programming interactions between ras-related GTPases and cell membranes. Ann Rev Cell Biol 1994; 10: 181–205.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Paoletti, R., Bernini, F., Corsini, A., Soma, M. (1998). Lipid Lowering Drugs and the Arterial Wall. In: Gotto, A.M., Lenfant, C., Paoletti, R., Catapano, A.L., Jackson, A.S. (eds) Multiple Risk Factors in Cardiovascular Disease. Medical Science Symposia Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5022-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5022-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6108-7

  • Online ISBN: 978-94-011-5022-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics