Skip to main content

Novel Therapeutic Approaches to Insulin Resistance/Diabetic Dyslipidemia

  • Chapter
Multiple Risk Factors in Cardiovascular Disease

Part of the book series: Medical Science Symposia Series ((MSSS,volume 12))

  • 266 Accesses

Abstract

Diagnosis of diabetes is based today not only on clear cut hyperglycemia (dependent or nondependent from insulin) but also on clinical syndromes, where hyperglycemia is only part of the picture. In the “insulin resistance syndrome” (IRS) also known as “syndrome X” or “metabolic syndrome” [1], hyperglycemia is mild to moderate, but elevated fasting or postprandial insulinemia leads to a variety of metabolic and clinical consequences, frequently to early coronary heart disease (CHD) [2]. In the IRS, the well-known diabetes associated lipid/lipoprotein abnormalities become predominant, in addition to the frequent concomitant occurrence of abdominal obesity and increased blood pressure [3]. Lipoprotein changes are characterized by triglyceride (TG) enrichment in the different lipoproteins, generally associated with reduction of high density lipoprotein (HDL) cholesterol [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Fronzo RA, Ferrannini E. Insulin resistance: A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14: 173–94.

    Article  Google Scholar 

  2. Modan M, Or J, Karasik A, et al. Hyperinsulinemia, sex, and risk of atherosclerotic cardiovascular disease. Circulation, 1991; 84: 1165–75.

    Article  CAS  PubMed  Google Scholar 

  3. Goldschmid MG, Barrett-Connor E, Edelstein SL, Wingard DL, Cohn, BA, Herman WH. Dyslipidemia and ischemic heart disease mortality among men and women with diabetes. Circulation 1994; 89: 991–97.

    Article  CAS  PubMed  Google Scholar 

  4. Bierman EL. Atherogenesis in diabetes. Arterioscl Thromb 1992; 12: 647–56.

    Article  CAS  PubMed  Google Scholar 

  5. Sane T, Taskinen M-R. Does familial hypertriglyceridemia predispose to NIDDM? Diabetes Care 1993; 16: 1494–1501.

    Article  CAS  PubMed  Google Scholar 

  6. Hanefeld M, Fischer S, Julius U, et al. Risk factors for myocardial infarction and death in newly detected NIDDM: The Diabetes Intervention Study, 11-year follow-up. Diabetologia 1996; 39: 1577–83.

    Article  CAS  PubMed  Google Scholar 

  7. Oppenheimer MJ, Sundquist K, Bierman EL. Downregulation of high-density lipoprotein receptor in human fibroblasts by insulin and IGF-1. Diabetes 1989; 38: 117–22.

    Article  CAS  PubMed  Google Scholar 

  8. Kasim SE, Kingston K, Jen K.-LC, Khilnani S. Significance of hepatic triglyceride lipase activity in the regulation of serum high density lipoproteins in type II diabetes mellitus. J Clin Endocrinol Metab 1987; 65: 183–87.

    Article  CAS  PubMed  Google Scholar 

  9. Juhan-Vague I, Messi MC. Plasminogen activator inhibitor-1 and atherothrombosis. Thromb Haemost 1993; 70: 138–43.

    CAS  PubMed  Google Scholar 

  10. Rodger W. Non-insulin-dependent (type II) diabetes mellitus. Can Med Assoc J 1991; 145: 1571–81.

    CAS  Google Scholar 

  11. Yki-Jarvinen H, Taskinen MR. Interrelationships among insulin’s antilipolytic and glucoregulatory effects and plasma triglycerides in nondiabetic and diabetic patients with endogenous hypertriglyceridemia. Diabetes 1988; 37: 1271–78.

    Article  CAS  PubMed  Google Scholar 

  12. Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analyses of the insulin-resistance syndrome (syndrome X). Diabetes 1992; 41: 715–22.

    Article  CAS  PubMed  Google Scholar 

  13. Laakso M, Kesäniemi A, Kervinen K, Jauhiainen, Pyörälä K. Relation of coronary heart disease and apolipoprotein E phenotype in patients with non-insulin dependent diabetes. Br Med J 1991; 303: 1159–62.

    CAS  Google Scholar 

  14. Kumar S, Durrington PN, Bhatnagar D, Laing I. Suppression of non-esterified fatty acids to treat type A insulin resistance syndrome. Lancet 1994; 343: 1073.

    Article  CAS  PubMed  Google Scholar 

  15. Saloranta C, Taskinen MR, Widén E, Härkönen M, Melander A, Groop L. Metabolic consequences of sustained suppression of free fatty acids by acipimox in patients with NIDDM. Diabetes 1993; 42: 1559–66.

    Article  CAS  PubMed  Google Scholar 

  16. Hubinger A, Weikert G, Wolf HP, Gries FA. The effect of etomoxir on insulin sensitivity in type 2 diabetic patients. Horrn Metab Res 1992; 115–18.

    Google Scholar 

  17. Ratheiser K, Schneeweiss B, Waldhäusl W, et al. Inhibition by etomoxir of carnitine palmitoyl transferase reduces hepatic glucose production and plasma lipids in non-insulin-dependent diabetes mellitus. Metabolism 1991; 40: 1185–90.

    Article  CAS  PubMed  Google Scholar 

  18. Wolf HPO, Eistetter K, Ludwig G. Phenylalkyloxirane carboxilic acids, a new class of hypoglycaemic substances: Hypoglycaemic and hypoketonaemic effects of sodium 2-[5–4chlorophenyl)-pentyl]-oxirane-2-carboxylate (B807–27) in fasted animals. Diabetologia 1982; 22: 456–63.

    Article  CAS  PubMed  Google Scholar 

  19. Balfour JA, McTavish D. Acarbose. An update on its pharmacology and therapeutic use in diabetes mellitus. Drugs 1993; 46: 1025–54.

    Article  CAS  PubMed  Google Scholar 

  20. Leonhardt W, Hanefeld M, Fischer S, Schulze J, Spengler M. Beneficial effects on serum lipids in noninsulin dependent diabetics by acarbose treatment. Arzneim-Forsch Drug Res 1991; 41: 735–38.

    CAS  Google Scholar 

  21. Shinozaki K, Suzuki M, Ikebuchi M, Hirose J, Hara Y, Harano Y. Improvement of insulin sensitivity an dyslipidemia with a new a -glucosidase inhibitor, voglibose, in nondiabetic hyperinsulinemic subjects. Metabolism 1996; 45: 731–37.

    Article  CAS  PubMed  Google Scholar 

  22. Arch JRS, Wilson S. Prospects for ß; adrenoceptor agonists in the treatment of obesity and diabetes. Int J Obesity 1996; 20: 191–99.

    CAS  Google Scholar 

  23. Sirtori CR Pasik C. Re-evaluation of a biguanide, metformin-mechanism of action and tolerability. Pharmacol Res 1994; 30: 187–228.

    Article  CAS  PubMed  Google Scholar 

  24. Bailey CJ, Mynett KJ, Page T. Importance of the intestine as a site of metformin-stimulated glucose utilization. Br J Pharmacol 1994; 112: 671–75.

    Article  CAS  PubMed  Google Scholar 

  25. Hundahl HS, Ramlal T, Reyes R, Leiter LA, Klip A. Cellular mechanism of metformin action involves glucose transporter translocation from an intracellular pool to the plasma membrane in L6 muscle cells. Endocrinology 1992; 131: 1165–73.

    Article  Google Scholar 

  26. Sirtori CR, Tremoli E, Sirtori M, Conti F, Paoletti R. Treatment of hypertriglyceridemia with metformin: Effectiveness and analysis of results. Atherosclerosis 1977; 26: 583–92.

    Article  CAS  PubMed  Google Scholar 

  27. Stumvoll M, Nurjahan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med 1995; 333: 550–54.

    Article  CAS  PubMed  Google Scholar 

  28. Butterfield J. The circulation in diabetes, from HL523 to the NO era. Lancet 1993; 342: 53336.

    Article  Google Scholar 

  29. Sirtori CR, Franceschini G, Gianfranceschi G, et al. Metformin improves peripheral vascular flow in non hyperlipidemic patients with arterial disease. J Cardiovasc Pharmacol 1984; 6: 91423.

    Article  Google Scholar 

  30. Hofmann C, Lorenz K, Colca JR Glucose transport deficiency in diabetic animals is corrected by treatment with the oral antihyperglycaemic agent pioglitazone. Endocrinology 1991; 129: 1915–25.

    Article  CAS  PubMed  Google Scholar 

  31. El-Kebbi IM, Roser S, Pollet RJ. Regulation of glucose transport by pioglitazone in cultured muscle cells. Metabolism 1994; 43: 953–58.

    Article  CAS  PubMed  Google Scholar 

  32. Murano K, Inoue Y, Emoto M, Kaku K, Kaneko T. CS-045, a new oral antidiabetic agent, stimulates fructose-2,6-bisphosphate production in rat hepatocytes. Eur J Pharmacol 1994; 254: 257–62.

    Article  CAS  PubMed  Google Scholar 

  33. Saltiel AR, Olefsky JM. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996; 45: 1661–69.

    Article  CAS  PubMed  Google Scholar 

  34. Tafuri SR. Troglitazone enhances differentiation, basal glucose uptake, and Glutl protein levels in 3T3-LI adipocytes. Endocrinology 1996; 137: 4706–12.

    Article  CAS  PubMed  Google Scholar 

  35. Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. J Lipid Res 1996; 37: 907–25.

    CAS  PubMed  Google Scholar 

  36. Kumar S., Boulton AJM, Beck-Nielsen H, et al. Troglitazone, an insulin action enhancer, improves metabolic control in NIDDM patients. Diabetologia 1996; 39: 701–9.

    Article  CAS  PubMed  Google Scholar 

  37. Nolan JJ, Olefsky JM, Nyce MR, Considine RV, Caro JF. Effect of troglitazone on leptin production. Diabetes 1996; 45: 1276–78

    Article  CAS  PubMed  Google Scholar 

  38. Rorsman P, Berggren P-O, Bokvist K, Efendic S. ATP-regulated IC channels and diabetes mellitus. NIPS 1990; 5: 143–47

    CAS  Google Scholar 

  39. Satin LS. New mechanisms for sulfonylurea control of insulin secretion. Endocrine 1996; 4: 191–98.

    Article  CAS  PubMed  Google Scholar 

  40. Aguilar-Bryan L, Nichols CG, Wechsler SW, et al. Cloning of the ß cell high-affinity sulfonylurea receptor: A regulator of insulin secretion. Science 1995; 268: 423–26.

    Article  CAS  PubMed  Google Scholar 

  41. Thomas PM, Cote GJ, Wohllk N, et al. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 1995; 268: 426–29.

    Article  CAS  PubMed  Google Scholar 

  42. Oyama Y, Kawasaki H, Hattori Y, Kanno M. Attenuation of endothelium-dependent relaxation in aorta from diabetic rats. Eur J Pharmacol 1986; 131: 75–78.

    Article  Google Scholar 

  43. Cacciapuoti F, Spiezia R, Bianchi U, Lama D, D’Avino M, Varricchio M. Effectiveness of glibenclamide on myocardial ischemic ventricular arrhythmias in non-insulin-dependent diabetes mellitus. Am J Cardiol 1991; 67: 843–47.

    Article  CAS  PubMed  Google Scholar 

  44. Correa SD, Schaefer S. Blockade of KA,P channels with glibenclamide does not abolish preconditioning during demand ischemia. Am J Cardiol 1997; 79: 75–78.

    Article  CAS  PubMed  Google Scholar 

  45. Bähr M, Von Holtey M, Müller G, Eckel J. Direct stimulation of myocardial glucose transport and glucose transporter-1 (GLUT 1) and GLUT4 protein expression by the sulfonylurea glimepiride. Endocrinology 1995; 136: 2547–53.

    Article  PubMed  Google Scholar 

  46. Vestergaard H, Weinreb JE, Rosen AS, Bjerbaek C, Hansen L, Pedersen O, Kahn BB. Sulfonylurea therapy improves glucose disposal without changing skeletal muscle GLUT4 levels in noninsulin-dependent diabetes mellitus subjects: A longitudinal study. J Clin Endocrinol Metab 1995; 80: 270–75.

    Article  CAS  PubMed  Google Scholar 

  47. Sirtori CR. Insulin resistance in diabetic dyslipidemia: Therapeutic approach. In Baba S, Kaneko T, editors. Diabetes. Excerpta Medica: Amsterdam, 1995: 1162–65.

    Google Scholar 

  48. United Kingdom Prospective Diabetes Study (UKPDS). Br Med J 1995; 310: 1005–6.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sirtori, C.R., Pazzucconi, F. (1998). Novel Therapeutic Approaches to Insulin Resistance/Diabetic Dyslipidemia. In: Gotto, A.M., Lenfant, C., Paoletti, R., Catapano, A.L., Jackson, A.S. (eds) Multiple Risk Factors in Cardiovascular Disease. Medical Science Symposia Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5022-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5022-4_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6108-7

  • Online ISBN: 978-94-011-5022-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics