Skip to main content

Oxidative Modification of LDL and Atherogenesis

  • Chapter
Multiple Risk Factors in Cardiovascular Disease

Part of the book series: Medical Science Symposia Series ((MSSS,volume 12))

Abstract

The hypothesis that oxidative modification of low density lipoprotein (LDL) might be a critically important step in atherogenesis grew out of the recognition that cholesterol accumulation in foam cells could not be due to uptake of native LDL by way of the LDL receptor. First of all, patients who totally lack LDL receptors nevertheless develop foam cell-rich lesions much like the lesions in hypercholesterolemic subjects with normal LDL receptors [1]. Second, neither cultured monocyte/macrophages [2] nor cultured smooth muscle cells [3] can be forced to accumulate any appreciable amounts of cholesterol ester by incubation with even very high concentrations of native LDL. This led to a search for alternative forms of LDL and alternative lipoprotein receptors. Chemically acetylated LDL (AcLDL) was the first modified form demonstrated to be taken up sufficiently rapidly by monocyte/macrophages to lead to cholesterol accumulation [2]. The uptake occurred by way of a new receptor, the AcLDL receptor, quite distinct from the native LDL receptor. Unlike the native LDL receptor, the acetyl LDL receptor does not downregulate as the cell cholesterol content increases, which allows the progressive accumulation of sterol. However, there is no evidence for generation of AcLDL in vivo. Oxidized LDL (OxLDL) was shown to be an alternative ligand for the AcLDL receptor and to cause accumulation of cholesterol esters in monocyte/macrophages [4]. Over the past decade a large body of evidence has accumulated demonstrating that oxidation of LDL does indeed take place in vivo and that this process may be playing a significant role in atherogenesis, at least in animal models [5,6]. If this hypothesis is valid with respect to the human disease, it would have important implications for intervention to slow the progression of atherosclerosis. Consequently there has been intense interest in the oxidation of LDL and the factors that contribute to it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldstein JL, Hobbs HEI, Brown MS. Familial hypercholesterolemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill, Inc., 1995: 1981–2030.

    Google Scholar 

  2. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 1979; 76: 333–37.

    Article  PubMed  CAS  Google Scholar 

  3. Weinstein DB, Carew TE, Steinberg D. Uptake and degradation of low density lipoprotein by swine arterial smooth muscle cells with inhibition of cholesterol biosynthesis. Biochim Biophys Acta 1976; 424: 404–21.

    Article  PubMed  CAS  Google Scholar 

  4. Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: Recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci USA 1981; 78: 6499–503.

    Article  PubMed  CAS  Google Scholar 

  5. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity [see comments]. N Engl J Med 1989; 320: 915–24.

    Article  PubMed  CAS  Google Scholar 

  6. Steinberg D. Oxidative modification of LDL and atherogenesis. The 1995 Lewis A. Conner Memorial Lecture. Circulation 1997; 95: 1062–71.

    Article  Google Scholar 

  7. Gerrity RG. The role of monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol 1981; 103: 181–90.

    PubMed  CAS  Google Scholar 

  8. Cybulsky MI, Gimbrone MA, Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991; 251: 788–91.

    Article  PubMed  CAS  Google Scholar 

  9. Bath P, Gladwin A, Martin J. Human monocyte characteristics are altered in hypercholesterolemia. Atherosclerosis 1991; 90: 175–81.

    Article  PubMed  CAS  Google Scholar 

  10. Fogelman A, Haberland M, Seager J, Hokom M, Edwards P. Factors regulating the activities of the low density lipoprotein receptor and the scavenger receptor on human monocyte-macrophages. J Lipid Res 1981; 22: 1131–41.

    PubMed  CAS  Google Scholar 

  11. Rajavashisth TB, Andalibi A, Territo MC, et al. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 1990; 344: 254–57.

    Article  PubMed  CAS  Google Scholar 

  12. Cushing SD, Berliner JA, Valente AJ, et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 1990; 87: 5134–38.

    Article  PubMed  CAS  Google Scholar 

  13. Sparrow CP, Parthasarathy S, Steinberg D. A macrophage receptor that recognizes oxidized low density lipoprotein but not acetylated low density lipoprotein. J Biol Chem 1989; 264: 2599–604.

    PubMed  CAS  Google Scholar 

  14. Arai H, Kita T, Yokode M, Narumiya S, Kawai C. Multiple receptors for modified low density lipoproteins in mouse peritoneal macrophages: Different uptake mechanisms for acetylated and oxidized low density lipoproteins. Biochem Biophys Res Comms 1989; 159: 1375–82.

    Article  CAS  Google Scholar 

  15. Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of biologically modified low density lipoprotein. Arteriosclerosis 1983; 3: 149–59.

    Article  PubMed  CAS  Google Scholar 

  16. Quinn MT, Parthasarathy S, Steinberg D. Endothelial cell-derived chemotactic activity for mouse peritoneal macrophages and the effects of modified forms of low density lipoprotein. Proc Natl Acad Sci USA 1985; 82: 5949–53.

    Article  PubMed  CAS  Google Scholar 

  17. Quinn MT, Parthasarathy S, Fong LG, Steinberg D. Oxidatively modified low density lipoproteins: A potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci USA 1987; 84: 2995–98.

    Article  PubMed  CAS  Google Scholar 

  18. Morel DW, Hessler JR, Chisolm GM. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. J Lipid Res 1983; 24: 1070–76.

    PubMed  CAS  Google Scholar 

  19. Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature 1990; 344: 160–62.

    Article  PubMed  CAS  Google Scholar 

  20. Palinski W, Yla-Herttuala S, Rosenfeld ME, et al. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 1990; 10: 325–35.

    Article  PubMed  CAS  Google Scholar 

  21. Palinski W, Rosenfeld ME, Yla-Herttuala S, et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989; 86: 1372–76.

    Article  PubMed  CAS  Google Scholar 

  22. Jackson RL, Barnhart RL, Mao SJ. Probucol and its mechanisms for reducing atherosclerosis. Adv Exp Med Biol 1991; 285: 367–72.

    Article  PubMed  CAS  Google Scholar 

  23. Yla-Herttuala S, Palinski W, Rosenfeld ME, et al. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 1989; 84: 1086–95.

    Article  PubMed  CAS  Google Scholar 

  24. Sevanian A, Hwang J, Hodis H, Cazzolato G, Avogaro P, Bittolo-Bon G. Contribution of an in vivo oxidized LDL to LDL oxidation and its association with dense LDL subpopulations. Arterioscler Thromb Vasc Biol 1996; 16: 784–93.

    Article  PubMed  CAS  Google Scholar 

  25. Hodis HN, Kramsch DM, Avogaro P, et al. Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL-). J Lipid Res 1994; 35: 669–77.

    PubMed  CAS  Google Scholar 

  26. Steinberg D. Antioxidants in the prevention of human atherosclerosis. Summary of the proceedings of a National Heart, Lung, and Blood Institute Workshop: September 5–6, 1991, Bethesda, Maryland. Circulation 1992; 85: 2337–44.

    CAS  Google Scholar 

  27. Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC. Vitamin E consumption and the risk of coronary disease in women. N Engl J Med 1993; 328: 1444–49.

    Article  PubMed  CAS  Google Scholar 

  28. Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 1993; 328: 1450–56.

    Article  PubMed  CAS  Google Scholar 

  29. Jha P, Flather M, Lonn E, Farkouh M, Yusuf S. The antioxidant vitamins and cardiovascular disease. A critical review of epidemiologic and clinical trial data [see comments]. Ann Intern Med 1995; 123: 860–72.

    PubMed  CAS  Google Scholar 

  30. Hennekens CH, Buying JE, Manson JE, et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Eng J Med 1996; 334: 1145–49.

    Article  CAS  Google Scholar 

  31. Omenn GS, Goodman GE, Thornquist MD, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Eng J Med 1996; 334: 1150–55.

    Article  CAS  Google Scholar 

  32. Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study Group. The effect of vitamin E and beta-carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med 1994; 330: 1029–35.

    Article  Google Scholar 

  33. Reaven P, Khouw A, Beltz W, Parthasarathy S, Witztum JL. Effect of dietary antioxidant combinations in humans: Protection of LDL by vitamin E, but not by B-carotene. Arterioscler Thromb 1993; 13: 590–600.

    Article  PubMed  CAS  Google Scholar 

  34. Dieber-Rotheneder M, Puhl H, Waeg G, Striegl G, Esterbauer H. Effect of oral supplementation with D-alpha-tocopherol on the vitamin E content of human low density lipoproteins and resistance to oxidation. J Lipid Res 1991; 32: 1325–32.

    CAS  Google Scholar 

  35. Reaven P, Ferguson E, Navab M, Powell F. Susceptibility of human low density lipoprotein to oxidative modification: Effects of variations in B-carotene concentration and oxygen tension. Arterioscler Thromb 1994; 14: 1162–12169.

    Article  PubMed  CAS  Google Scholar 

  36. Esterbauer H, Striegl G, Puhl H, Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Rad Res Comms 1989; 6: 67–75.

    Article  CAS  Google Scholar 

  37. Shaish A, Daugherty A, O’Sullivan F, Schonfeld G, Heinecke JW. Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits. J Clin Invest 1995; 96: 2075–82.

    Article  PubMed  CAS  Google Scholar 

  38. Stephens NG, Parsons A, Schofield PM, et al. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). The Lancet 1996; 347: 781–85.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Steinberg, D. (1998). Oxidative Modification of LDL and Atherogenesis. In: Gotto, A.M., Lenfant, C., Paoletti, R., Catapano, A.L., Jackson, A.S. (eds) Multiple Risk Factors in Cardiovascular Disease. Medical Science Symposia Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5022-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5022-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6108-7

  • Online ISBN: 978-94-011-5022-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics