Skip to main content

Plasma Homocyst(e)ine [H(e)] and Arterial Occlusive Diseases: Gene-Nutrient Interactions

  • Chapter
Multiple Risk Factors in Cardiovascular Disease

Part of the book series: Medical Science Symposia Series ((MSSS,volume 12))

  • 266 Accesses

Abstract

Interest in the association between plasma homocyst(e)ine1 and vascular diseases has increased substantially. Table 1 shows the number of reports in the last 30 years listed in Medline under “homocysteine/blood.” The data indicate that the annual rate of publications was initially 1.4 and it raised to 62 in the last five years, i.e. about a 44-fold increase within the span covered by the literature search. Such an accelerated growth probably reflects the potential clinical importance of homocyst(e)inemia in vascular occlusive diseases and the usual decrease of homocyst(e)ine levels brought about by inexpensive vitamin therapy. The availability of methods for accurately measuring plasma homocyst(e)ine and the more recent emphasis on genes regulating the expression of enzymes involved in the methionine/homocysteine metabolism, may also have contributed to such growth in publications [see reviews in 1–6]. This presentation will be necessarily selective in view of the large number of reports dealing with the subject. Thus, the association of elevated homocyst(e)ine to idiopathic venous thrombosis and pulmonary embolism [7–9] will not be considered. Moreover, in order to comply with time restraints, potentially involved mechanisms at the cellular level and results obtained postmethionine loading test, a procedure that may unmask abnormalities in the metabolism of methionine/homocysteine [10] will not be discussed, except as noted. Previous publications by the author will be quoted freely here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kang SS, Wong PWK, Malinow MR. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Ann Rev Nutr 1992; 12: 259–78.

    Article  Google Scholar 

  2. Duell PB, Malinow MR. Homocyst(e)inemn important risk factor for atherosclerotic vascular disease. Curr Opin Lipid 1997; 8: 28–34.

    Article  CAS  Google Scholar 

  3. Malinow MR. Hyperhomocyst(e)inemia. A common and easily reversible risk factor for atherosclerosis. Circulation 1990; 81: 2004–6.

    Article  PubMed  CAS  Google Scholar 

  4. Malinow MR. Homocyst(e)ine and arterial occlusive diseases. J Intern Med 1994; 236: 603–17.

    Article  PubMed  CAS  Google Scholar 

  5. Malinow MR. Plasma homocyst(e)ine and arterial occlusive diseases: A mini-review. Clin Chem 1994; 41: 173–76.

    Google Scholar 

  6. Mayer EL, Jacobsen DW, Robinson K. Homocysteine and coronary atherosclerosis. J Am Coll Cardiol 1996; 27: 517–27.

    Article  PubMed  CAS  Google Scholar 

  7. den Heijer M, Koster T, Blom HJ, et al. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N Engl J Med 1996; 334: 759–62.

    Article  Google Scholar 

  8. Ridker PM, Hennekens CH, Lindpainter K, Stampfer MJ, Eisenberg PR, Miletich JP. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 1995; 332: 912–17.

    Article  PubMed  CAS  Google Scholar 

  9. Ridker PM, Hennekens CH, Selhub J, Miletich JP, Malinow MR, Stampfer MJ. Interrelation of hyperhomocyst(e)inemia, factor V Leiden, and risk of future venous thromboembolism. Circulation 1997; 95: 1777–82.

    Article  PubMed  CAS  Google Scholar 

  10. Bostom AG, Jacques PF, Nadeau MR, Williams RR, Ellison RC, Selhub J. Post-methionine load hyperhomocysteinemia in persons with normal fasting total plasma homocysteine: Initial results from the NHLBI family heart study. Atherosclerosis 1995; 116: 147–51.

    CAS  Google Scholar 

  11. Mudd SH, Levy HL. Disorders in transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic basis of inherited disease, 6th ed. McGraw-Hill: New York, 1989: 693–734.

    Google Scholar 

  12. McCully KS. Vascular pathology of homocysteinemia: Implications for the pathogensis of arteriosclerosis. Am J Pathol 1969; 56: 111–28.

    PubMed  CAS  Google Scholar 

  13. Wilcken DEL, Wilcken B. The pathogenesis of coronary artery disease. A possible role for methionine metabolism. J Clin Invest 1976; 57: 1079–82.

    Article  PubMed  CAS  Google Scholar 

  14. Murphy-Chutorian DR, Wexman MP, Grieco Ai, et al. Methionine intolerance: A possible risk factor for coronary artery disease. J Am Coll Card 1985; 6: 725–30.

    Article  CAS  Google Scholar 

  15. Clarke R, Daly L, Robinson K, et al. Hyperhomocysteinemia: An independent risk factor for vascular disease. N Engl J Med 1991; 324: 1149–55.

    Article  PubMed  CAS  Google Scholar 

  16. Kang SS, Wong PWK, Cook HY, Norusis M, Messer JV. Protein-bound homocyst(e)ine. A possible risk factor for coronary heart disease. J Clin Invest 1986; 77: 1482–86.

    Article  PubMed  CAS  Google Scholar 

  17. Malinow MR, Sexton G, Averbuch M, Grossman M, Wilson DL, Upson B. Homocyst(e)inemia in daily practice: Levels in coronary heart disease. Coron Art Dis 1990; 1: 215–20.

    Article  Google Scholar 

  18. Genest JJ, McNamara JR, Salem DN, Wilson PWF, Schaefer EJ, Malinow MR. Plasma homocyst(e)ine levels in men with premature coronary artery disease. J Am Coll Card 1990; 16: 1114–18.

    Article  Google Scholar 

  19. Genest JJ, McNamara MT, Upson B, et al. Prevalence of familial hyperhomocyst(e)inemia in men with premature coronary artery disease. Arterioscler Thromb 1991; 11: 1129–36.

    Article  PubMed  Google Scholar 

  20. Boers GHJ, Smals AGH, Trijbels FJM, et al. Heterozygosity for homocystinuria in premature peripheral and cerebral occlusive arterial disease. N Engl J Med 1985; 313: 709–15.

    Article  PubMed  CAS  Google Scholar 

  21. Brattstrom LE, Hardebo JE, Hultberg BL. Moderate homocysteinemia-a possible risk factor for arteriosclerotic cerebrovascular disease. Stroke 1984; 14: 1012–16.

    Article  Google Scholar 

  22. Araki A, Sako Y, Fukushima Y, Matsumoto M, Asada T, Kita T. Plasma sulfhydryl- containing amino acids in patients with cerebral infarction and in hypertensive subjects. Atherosclerosis 1989; 79: 139–46.

    Article  PubMed  CAS  Google Scholar 

  23. Coull BM, Malinow MR, Beamer N, Sexton G, Nordt F, deGarmo P. Elevated plasma homocyst(e)ine in acute stroke and TIA: A possible independent risk factor for stroke. Stroke 1990; 21: 572–76.

    CAS  Google Scholar 

  24. Brattstrom L, Lindgren A, Israelsson B, Malinow MR, Norrving B, Upson B. Hyperhomocysteinaemia in stroke-prevalence, cause, and relationships to type of stroke and stroke risk factors. Eur J Clin Invest 1992; 22: 214–21.

    Article  PubMed  CAS  Google Scholar 

  25. Mansoor MA, Bergmark C, Svardal AM, Lonning PE, Ueland PM. Redox status and protein binding of plasma homocysteine and other aminothiols in patients with early-onset peripheral vascular disease. Arterioscler Thromb Vasc Biol 1995; 15: 232–40.

    Article  PubMed  CAS  Google Scholar 

  26. Malinow MR, Kang SS, Taylor LM, et al. Prevalence of hyperhomocyst(e)inemia in patients with peripheral arterial occlusive disease. Circulation 1989; 79: 1180–88.

    Article  PubMed  CAS  Google Scholar 

  27. Molgaard J, Malinow MR, Lassvik C, Holm AC, Upson B, Olsson AG. Hyperhomocyst(e)inemia: An independent risk factor for intermittent claudication. J Intern Med 1992; 231: 273–80.

    Article  PubMed  CAS  Google Scholar 

  28. Williams, RR, Malinow MR, Hunt SC, et al. Hyperhomocyst(e)inemia in Utah siblings with early coronary disease. Coron Art Dis 1990; 1: 681–85.

    Article  Google Scholar 

  29. Wu LL, Wu J, Hunt SC, James BC, et al. Plasma homocyst(e)ine as a risk factor for early familial coronary artery disease. Clin Chem 1994; 40: 552–61.

    PubMed  CAS  Google Scholar 

  30. Reed T, Malinow MR, Christian JC, Upson B. Estimates of heritability of plasma homocyst(e)ine levels in aging adult male twins. Clin Genet 1991; 39: 425–28.

    Article  PubMed  CAS  Google Scholar 

  31. Berg K, Malinow MR, Kierulf P, Upson B. Population variation and genetics of plasma homocyst(e)ine level. Clin Genet 1991; 41: 315–21.

    Article  Google Scholar 

  32. Tonstad S, Refsum H, Sivertsen M, Christophersen B, Ose L, Ueland PM. Relation of total homocysteine and lipid levels in children to premature cardiovascular death in male relatives. Pediatr Res 1996; 40: 47–52.

    Article  PubMed  CAS  Google Scholar 

  33. Arnesen E, Refsum H, Bonaa KH, Ueland PM, Forde OH, Nordrehaug JE. Serum total homocysteine and coronary heart disease. Int J Epidemiol 1995; 24: 704–9.

    Article  PubMed  CAS  Google Scholar 

  34. Malinow MR, Ducimetiere P, Luc G, et al. Plasma homocyst(e)ine levels and graded risk for myocardial infarction: Findings in two populations at contrasting risk for coronary heart disease. Atherosclerosis 1996; 126: 27–34.

    Article  PubMed  CAS  Google Scholar 

  35. Verhoef P, Kok FJ, Kruyssen D, et al. Plasma total homocyst(e)ine, B vitamins, and risk of coronary atherosclerosis. Arterioscler Thromb Vasc Biol 1997; 17: 989–95.

    Article  PubMed  CAS  Google Scholar 

  36. Robinson K, Mayer EL, Miller DP, et al. Hyperhomocysteinemia and low pyridoxal phosphate. Circulation 1995; 92: 2825–30.

    Article  PubMed  CAS  Google Scholar 

  37. Kang SS, Wong PWK, Norusis M. Homocyst(e)inemia due to folate deficiency. Metabolism 1987; 36: 458–62.

    Article  PubMed  CAS  Google Scholar 

  38. Ueland PM, Refsum H, Stabler SP, Malinow MR, Andersson A, Allen RH. Total homocysteine in plasma or serum. Methods and clinical application. Clin Chem 1993; 39: 1764–79.

    PubMed  CAS  Google Scholar 

  39. Lindenbaum J, Rosenberg IH, Wilson PWF, Stabler SP, Allen RH. Prevalence of cobalamin deficiency in the Framingham elderly population. Am J Clin Nutr 1994; 60: 2–11.

    PubMed  CAS  Google Scholar 

  40. Ubbink JB, van der Merwe A, Vermaak WJH, et al. Hyperhomocysteinemia and the response to vitamin supplementation. Clin Invest 1993; 71: 993–98.

    Article  CAS  Google Scholar 

  41. Brattstrom LE, Israelsson B, Jeppsson J-O, Hultberg BL. Folic acid-an innocuous means to reduce plasma homocysteine. Scand J Clin Lab Invest 1988; 48: 215–21.

    Article  PubMed  CAS  Google Scholar 

  42. Bostom AG, Shemin D, Lapane KL, et al. High dose B-vitamin treatment of hyperhomocysteinemia in dialysis patients. Kidney Int 1996; 49: 147–52.

    Article  PubMed  CAS  Google Scholar 

  43. Lindenbaum J, Helaton EB, Savage DG, et al. Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med 1988; 318: 1720–28.

    Article  PubMed  CAS  Google Scholar 

  44. Ubbink JB, van der Merwe A, Delport R, et al. The effect of a subnormal vitamin B6 status on homocysteine metabolism. J Clin Invest 1996; 98: 177–84.

    Article  PubMed  CAS  Google Scholar 

  45. van den Berg M, Franken DG, Boers GH, et al. Combined vitamin B6 plus folic acid therapy in young patients with arteriosclerosis and hyperhomocysteinemia. J Vasc Surg 1994; 20: 93340.

    Google Scholar 

  46. Kang SS, Passen EI, Ruggie N, Wong PWK, Sora J. Thermolabile defect of methylenetetrahydrofolate reductase in coronary artery disease. Circulation 1993; 88: 1463–69

    Article  PubMed  CAS  Google Scholar 

  47. Kang SS, Wong PWK, Susmano A, Sora J, Norusis M, Ruggie N. Thermolabile methylenetetrahydrofolate reductase: An inherited risk factor for coronary artery disease. Am J Hum Genet 1991; 48: 536–45.

    PubMed  CAS  Google Scholar 

  48. Goyette P, Sumner JS, Milos R, et al. Human methylenetetrahydrofolate reductase: Isolation of DNA, mapping and mutation identification. Nat Genet 1994; 7: 195–200.

    Article  PubMed  CAS  Google Scholar 

  49. Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 111–3.

    Article  PubMed  CAS  Google Scholar 

  50. Motulsky AG. Nutritional ecogenetics: Homocysteine-related arteriosclerotic vascular disease, neural tube defects, and folic acid. Am J Hum Genet 1996; 58: 17–20.

    PubMed  CAS  Google Scholar 

  51. Kluijmans LAJ, Lambert PWJ, van den Heuvel WJ, et al. Molecular genetic analysis in mild hyperhomocysteinemia: A common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am J Hum Genet 1996; 58: 35–41.

    Google Scholar 

  52. Gallagher PM, Meleady R, Shields DC, et al. Homocysteine and risk of premature coronary heart disease. Circulation 1996; 94: 2154–58.

    Article  PubMed  CAS  Google Scholar 

  53. Gallagher PM, Meleady R, Shields DC, et al. Homocysteine and risk of premature coronary heart disease. Circulation 1996; 94: 2154–58.

    Article  PubMed  CAS  Google Scholar 

  54. Wilcken DEL, Wang ZL, Sim AS, McCredie RM. Distribution of healthy and coronary populations of the methylenetetrahydrofolate reductase (MTHFR) C67T mutation. Arterioscler Thromb Vasc Biol 1996; 16: 878–82.

    Article  PubMed  CAS  Google Scholar 

  55. Schmitz C, Lindpaintner K, Verhoef P, Gaziano JM, Ruing J. Genetic polymorphism of methylenetetrahydrofolate reductase and myocardial infarction: A case-control study. Circulation 1996; 94: 1812–14.

    CAS  Google Scholar 

  56. Deloughery TG, Evans A, Sadeghi A, et al. Common mutation in methylenetetrahydrofolate reductase: Correlation with homocysteine metabolism and late-onset vascular disease. Circulation 1996: 94: 3074–78.

    Article  PubMed  CAS  Google Scholar 

  57. van Bockxmeer FM, Mamotte CDS, Vasikaran SD, Taylor RR. Methylenetetrahydrofolate reductase gene and coronary artery disease. Circulation 1997; 95: 21–23.

    Article  PubMed  Google Scholar 

  58. Brugada R, Marian AJ. A common mutation in methylenetetrahydrofolate reductase gene is not a major risk of coronary artery disease or myocardial infarction. Atherosclerosis 1997; 128: 107–12.

    Article  PubMed  CAS  Google Scholar 

  59. Christensen B, Frosst P, Lussier-Cacan S, et al. Correlation of a common mutation in the methylenetetrahydrofolate reductase gene with plasma homocysteine in patients with premature coronary artery disease. Arterioscler Thromb Vasc Biol 1997; 17: 569–73.

    Article  PubMed  CAS  Google Scholar 

  60. Guttormsen AB, Ueland PM, Nesthus I, et al. Determinants and vitamin responsiveness of intermediate hyperhomocysteinemia. J Clin Invest 1996; 98: 2174–83.

    Article  PubMed  CAS  Google Scholar 

  61. Howard VJ, Chambless LE, Malinow MR, Lefkowitz D, Toole JF. Results of a homocyst(e)ine lowering pilot study in acute stroke patients. Stroke 1997; 28: 234.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Malinow, M.R. (1998). Plasma Homocyst(e)ine [H(e)] and Arterial Occlusive Diseases: Gene-Nutrient Interactions. In: Gotto, A.M., Lenfant, C., Paoletti, R., Catapano, A.L., Jackson, A.S. (eds) Multiple Risk Factors in Cardiovascular Disease. Medical Science Symposia Series, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5022-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5022-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6108-7

  • Online ISBN: 978-94-011-5022-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics