Skip to main content

The Bell Differential Polynomials

  • Chapter
Book cover Applications of Fibonacci Numbers

Abstract

Let A be an associative algebra with a unit element 1. If A is commutative then there holds the well-known binomial law

$$ (x + y)n = \sum\limits_{k = 0}^n {(_k^n} {)_x}n - {k_y}k $$
((1))

where formally x 0 = 1, y 0 = 1. Our aim is to generalize the binomial law to the case where A is not necessarily commutative. This is possible if the successive commutators

$$ y' = [x,y],y = [x,y'],y' = [x,y], \cdots $$

are considered to be known. Namely, a factor x can be shifted from the left to the right by means of identities like

$$ xy = y' + yx,xy' = y'' + y'x, \cdots $$

We obtain

$$ {(x + y)^2} = {x^2} + 2yx + (y' + {y^2}) $$
((2))

,

$$ {(x + y)^3} = {x^3} + 3y{x^2} + 3(y' + {y^2})x + (y'' + 2yy' + y'y + {y^3}) $$
((3))

and so on. Some notions have to be introduced in order to describe the general procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Czichowski, G. “Hausdorff und die Exponentialfunktion in der Lie-Theorie.” Seminar Sophus Lie Darmstadt, Vol. 2 (1992): pp. 85–93.

    MathSciNet  MATH  Google Scholar 

  2. di Bruno, F. “Sullo soiluppo delie fusioni.” Annali di Scienze Mathematiche e Fisiche di Tortolini, Vol. 6 (1855): pp. 479–480.

    Google Scholar 

  3. di Bruno, F. “Note sur une nouvelle formule de calcul differentiel.” Quart J. of Pure and Appl. Math., Vol. 1 (1857): pp. 359–360.

    Google Scholar 

  4. Hausdorff, F. “Die symbolische Exponentialformel in der Gruppentheorie.” Ber. Verhanil. Königl. Sächs. Ges. Wiss. Leipzig, Vol. 58 (1906): pp. 19–48.

    Google Scholar 

  5. Henrard, J. “On a perturbation theory using Lie transforms.” Celestial Mechanics, Vol. 3 (1970): pp. 107–120.

    Article  MathSciNet  MATH  Google Scholar 

  6. Kamel, A. A. “Perturbation method in the theory of nonlinear oscillations.” Celestial Mechanics, Vol. 3 (1970): pp. 90–106.

    Article  MathSciNet  MATH  Google Scholar 

  7. Kaufmann, A. Introduction a la Combinatoriaue en vue des Applications. Dunod, Paris (1968).

    Google Scholar 

  8. Riordan, J. Combinatorial Identities Wiley, New York (1968).

    Google Scholar 

  9. Schimming, R. and Rida, S. Z. “Non-commutative Bell polynomials.” Intern. J. of Algebra and Comput., Vol. 6 (1996): pp. 635–644.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schimming, R., Rida, S.Z. (1998). The Bell Differential Polynomials. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5020-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5020-0_40

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6107-0

  • Online ISBN: 978-94-011-5020-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics