Skip to main content

Abstract

A transformation of [n] = 1,2, …, n is a function from the set to itself. Such a function, θ, is order-preserving if, for all i, j ∈ [n], ijiθ ≤ jθ. The property of being order-preserving is maintained under composition, and the identity function is order-preserving, so the set of all order-preserving functions of [n] forms a monoid, which is denoted Q n . An element, θ, of Qn is idempoteni if θ ○ θ = θ, where ○ denotes composition of functions. This paper is an examination of combinatorial properties of the set of idempotents of Q n .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gomes, G.M.S. and Howie, J.M. “On the ranks of certain semigroups of order-preserving transformations”. Semigroup Forum, Vol. 41 (1991): pp. 1–15.

    Google Scholar 

  2. Gould, H.W. Combinatorial Identities. Morgantown Printing and Binding Co. (1972).

    Google Scholar 

  3. Higgins, P.M. “Combinatorial results for semigroups of order-preserving mappings.” Math. Proc. Camb. Phil. Soc., Vol. 113 (1993): pp. 281–296.

    Article  MathSciNet  MATH  Google Scholar 

  4. Higgins, P.M. Techniques of Semigroup Theory. Oxford University Press, 1992.

    Google Scholar 

  5. Higgins, P.M. “Random products in semigroups of mappings.” In Lattices, semigroups and universal algebra (ed. J. Almeida et al) Plenum Press, New York, (1990): pp. 89–90.

    Google Scholar 

  6. Howie, J.M. “Products of idempotents in certain semigroups of transformations.” Proc. Edinburgh Math. Soc., Vol. 17 (1971): pp. 223–236.

    Article  MathSciNet  MATH  Google Scholar 

  7. Lavers, T.G. “Fibonacci numbers, ordered partitions, and transformations of a finite set.” Australasian J. of Comb., Vol. 10 (1994): 147–151.

    MathSciNet  MATH  Google Scholar 

  8. Lavers, T.G. “The Monoid of Ordered Partitions of a Natural Number.” Semigroup Forum, Vol. 53 (1996): pp. 44–56.

    Article  MathSciNet  MATH  Google Scholar 

  9. Lavers, T.G. “The Theory of Vines.” Communications in Algebra (to appear).

    Google Scholar 

  10. Stanley, R.P. Enumerative Combinatorics (Volume I). Wadsworth and Brooks (1986).

    Google Scholar 

  11. Solomon, A.I. “Catalan Monoids, Monoids of Local Endomorphisms, and their Presentations.” Semigroup Forum, Vol. 53 (1996): pp. 351–368.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lavers, T.G. (1998). The Fibonacci Pyramid. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5020-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5020-0_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6107-0

  • Online ISBN: 978-94-011-5020-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics