Skip to main content

A Fibonacci-Fractal: A Bicolored Self-Similar Multifractal

  • Chapter
Applications of Fibonacci Numbers
  • 463 Accesses

Abstract

Since the concept of a multifractal (or multiscale fractal) has been introduced within the theory of fully developed fluid turbulence [10,4,12,13] it has found widespread applications in the description of fractal geometry in nature [9,2]. In physics multifractals emerged also in the study of chaotic dynamics, disordered systems, critical phenomena and pattern growth [5,14,15]. Whereas in homogeneous fractals the scaling laws of quantities like density of points in boxes of D dimensional space or phase space and probability distributions are characterized by a single exponent, or dimension D 0 < D, a continuous range for such exponents is necessary to describe multifractals. Generalized dimensions D q defined for real q enter the stage [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, T.C. “Description of the characteristic sequence of an irrational.” Canad. Math Bull., Vol. 36 (1993): pp. 15–21.

    Article  MathSciNet  MATH  Google Scholar 

  2. Falconer, K.J. Fractal Geometry. Mathematical Foundations and Applications. Wiley, Chichester, 1990, Ch. 17.

    Google Scholar 

  3. Feigenbaum, M.J. “Some characterizations of strange sets.” J. Stat. Phys., Vol. 46 (1987): pp. 919–924.

    Article  MathSciNet  MATH  Google Scholar 

  4. Frisch, U. and Parisi, G. “On the singularity structure of fully developed turbulence.” Appendix to the article by U. Frisch in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. Edts. M. Ghil, R. Benzi and G. Parisi, North Holland, 1985, Proceedings of the “Enrico Fermi” School, course LXXXVIII, 1983.

    Google Scholar 

  5. Halsey, Th. C., Jensen, M.H., Kadanoff, L.P., Procaccia, I. and Shraiman, B.I. “Fractal measures and their singularities: The characterization of strange sets.” Phys. Rev. A, Vol. 33 (1986): pp. 1141–1151.

    Article  MathSciNet  MATH  Google Scholar 

  6. Hentschel, H.G.E. and Procaccia, I. “The infinite number of generalized dimensions of fractals and strange attractors.” Physica, Vol. 8D (1983): pp. 435–444.

    MathSciNet  Google Scholar 

  7. Lang, W. “On the characteristic polynomials of Fibonacci chains.” J. Phys. A, Vol. 25 (1992): pp. 5395–5413, ibid. Vol. 26 (1993): p. 1261.

    Article  MathSciNet  Google Scholar 

  8. Lang, W. “The Wythoff and the Zeckendorf Representations of numbers are equivalent.” Applications of Fibonacci Numbers. Volume 6. Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996: pp. 321–337.

    Chapter  Google Scholar 

  9. Mandelbrot, B.B. The Fractal Geometry of Nature. W.H. Freeman, New York, 1983.

    Google Scholar 

  10. Mandelbrot, B.B. “Intermittent turbulence in self-similar cascades: divergence of higher moments and dimension of the carrier.” J. Fluid Mechanics, Vol. 62 (1974): pp. 331–358.

    Article  MATH  Google Scholar 

  11. Mandelbrot, B.B. “An Introduction to multifractal distribution functions.” Random Fluctuations and Pattern Growth: Experiments and Models. Kluwer, Dordrecht, 1988. Cargese proceedings 1988: pp. 279–291.

    Chapter  Google Scholar 

  12. McCauley, J.L. “Introduction to multifractals in dynamical systems theory and fully developed fluid turbulence.” Phys. Rep., Vol. 189 (1990): pp. 225–266.

    Article  MathSciNet  MATH  Google Scholar 

  13. Paladin, G. and Vulpiani, A. “Anomalous scaling laws in multifractal objects.” Phys. Rep., Vol. 156 (1987): pp. 147–225.

    Article  MathSciNet  Google Scholar 

  14. Schroeder, M. Fractals. Chaos. Power Laws. W.H. Freeman, New York, 1991.

    MATH  Google Scholar 

  15. Stanley, H.E. and Ostrowsky, N. edts. Random Fluctuations and Pattern Growth: Experiments and Models. Kluwer, Dordrecht, 1988. Cargèse proceedings 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lang, W. (1998). A Fibonacci-Fractal: A Bicolored Self-Similar Multifractal. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5020-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5020-0_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6107-0

  • Online ISBN: 978-94-011-5020-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics