Skip to main content

Abstract

We introduce the Fibonacci Shuffle Tree (FST) which is an infinite binary tree with nodes 0, 1, 2,…. The FST is a binary search tree if we associate the key {kα} with node k for each k = 0, 1, 2, …, where α = (1 + √5/2 and {x} denotes the fractional part of x. If F[ k] denotes a subtree of the FST induced by nodes 0, 1, 2, …, k, then F[k] can be obtained from F[k - 1] by standard binary tree insertion of the key {k α} into F[ k - 1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, P.G. “A Fibonacci-based pseudo-random number generator.” Applications of Fibonacci Numbers. Volume 4. Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991: pp. 1–8.

    Chapter  Google Scholar 

  2. Chuan, W. and Anderson, P.G. “α-radix codes and κ-shuffle trees.” (to appear).

    Google Scholar 

  3. Graham, R.L., Knuth, D.E. and Patashnik, O. Concrete Mathematics. Addison-Wesley, 1989.

    Google Scholar 

  4. Knuth, D.E. The Art of Computer Programing. Vol. 3: sorting and Searching. Addison-Wesley, 1973.

    Google Scholar 

  5. van Ravenstein, T. “The three gap theorem (Steinhaus Conjecture).” J. Austral. Math. Soc. (Series A), Vol. 45 (1988): pp. 360–370.

    Article  MATH  Google Scholar 

  6. Sós, V.T. “On the theory of diophantine approximations, I.” Acta. Math. Acad. Sci. Hung., Vol. 8 (1957): pp. 461–471.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Anderson, P.G. (1998). The Fibonacci Shuffle Tree. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5020-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5020-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6107-0

  • Online ISBN: 978-94-011-5020-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics