Skip to main content

Soluble FcγR, a biological perspective

  • Chapter
  • 108 Accesses

Part of the book series: Immunology and Medicine Series ((IMME,volume 26))

Abstract

Soluble FcγR (sFcγR) were discovered in supernatants of cells of the immune system during the 1970s, and called immunoglobulin G-binding factors. Twenty years later, although the structure and mechanisms of generation of sFcγR have been largely clarified [see References 1–5 for reviews], questions remain regarding their biological role. In this chapter, we will review available evidence showing that these molecules can regulate immune reactions in vitro. The question of their in vivo role will be addressed on the basis of studies performed in various pathological situations and with transgenic animals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fridman WH, Rabourdin-Combe C, Néauport-Sautès C, Gisler RH. Characterization and function of T cell Fcγreceptor. Immunol Rev. 1981; 56: 51–88.

    Article  PubMed  CAS  Google Scholar 

  2. Fridman WH, Bonnerot C, Daëron M, Amigorena S, Teillaud JL, Sautès C. Structural bases of Fcγreceptor functions. Immunol Rev. 1992; 125: 49–76.

    Article  PubMed  CAS  Google Scholar 

  3. Teillaud J-L, Bouchard C, Astier A et al. Natural and recombinant soluble low-affinity FcγR: detection, purification, and functional activities. Immuno Meth. 1994; 4: 48–64.

    Article  CAS  Google Scholar 

  4. Sautès C. Soluble Fc receptors. In: Fridman WH and Sautès C, eds, Cell Mediated Effects of Immunoglobulins. Austin: R.G. Landes Co; 1997: 139–64

    Chapter  Google Scholar 

  5. Galon J, Paulet P, Galinha A et al. Soluble Fcγreceptors: interaction with ligands and biological consequences. Int Rev Immunol. 1997; 16: 87–111.

    Article  PubMed  CAS  Google Scholar 

  6. Ghirlando R, Keown MB, Mackay GA, Lewis MS, Unkeless JC, Gould HJ. Stoichiometry and thermodynamics of the interaction between the Fc fragment of human IgG1 and its low affinity receptor Fc gamma RIII. Biochemistry. 1995; 34: 13320–7.

    Article  PubMed  CAS  Google Scholar 

  7. Esposito-Farèse ME, Sautès C, de la Salle H. Membrane and soluble FcγRII/III modulate the antigen presenting capacity of murine dendritic epidermal Langerhans cells for IgG-complexed antigens. J Immunol. 1995; 155: 1725–36.

    PubMed  Google Scholar 

  8. Ierino FL, Powell MS, McKenzie IF, Hogarth PM. Recombinant soluble human Fc gamma RI1: production, characterization, and inhibition of the Arthus reaction. J Exp Med. 1993; 178: 1617–28.

    Article  PubMed  CAS  Google Scholar 

  9. Astier A, de la Salle H, de la Salle C et al. Human epidermal Langerhans cells secrete a soluble receptor for IgG (FcγRII/CD32) that inhibits the binding of immune-complexes to FcγR+ cells. J Immunol. 1994; 152: 201–12.

    PubMed  CAS  Google Scholar 

  10. Gachet C, Astier A, de la Salle H et al. Release of FcγRIIa2 by activated platelets and inhibition of anti-CD9-mediated platelet aggregation by recombinant FcγRIIa2. Blood. 1995; 85: 698–704.

    PubMed  CAS  Google Scholar 

  11. Lynch A, Tartour E, Teillaud JL, Asselain B, Fridman WH, Sautès C. Increased levels of soluble low affinity Fcγreceptor (IgG-binding factor) in the sera of tumour-bearing mice. Clin Exp Immunol. 1992; 87: 208–14.

    Article  PubMed  CAS  Google Scholar 

  12. Aubry J-P, Pochon S, Graber P, Jansen KU, Bonnefoy J-Y. CD21 is a ligand for CD23 and regulates IgE production. Nature. 1992; 358: 505–7.

    Article  PubMed  CAS  Google Scholar 

  13. Lecoanel-Henchoz S, Gauchat J, Aubry J et al. CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18. Immunity. 1995; 3: 119–25.

    Article  Google Scholar 

  14. Kimberly RP, Tappe NJ, Merriam LT et al. Carbohydrates on human Fc gamma receptors. Interdependence of the classical IgG and nonclassical lectin-binding sites on human Fc gamma RIII expressed on neutrophils. J Immunol. 1989; 142: 3923–30.

    PubMed  CAS  Google Scholar 

  15. Petty HR, Todd RF III. Receptor-receptor interactions of complement receptor type 3 in neutrophil membranes. J Leuk Biol. 1993; 54: 492–4.

    CAS  Google Scholar 

  16. Galon J, Gauchat JF, Mazières N et al. Soluble FcγReceptor type III (FcγRIII, CD16) triggers cell activation through interaction with complement receptors. J Immunol. 1996; 157: 1184–92.

    PubMed  CAS  Google Scholar 

  17. Ross GD, Vetvicka V. CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multiple ligand specificities and functions. Clin Exp Immunol. 1993; 92: 181–4.

    Article  PubMed  CAS  Google Scholar 

  18. de la Salle H, Galon J, Bausinger H et al. Binding of recombinant soluble FcγRIII to human dendritic cells induces phenotype changes, soluble FcγRIII internalization and cytokine secretion. In: Ricciardi-Castagnol P, ed., Dendritic Cells in Fundamental and Clinical Immunology. Plenum Press. 1997; 3: 345–52.

    Google Scholar 

  19. Brunati S, Moncuit J, Fridman WH, Teillaud JL. Regulation of IgG production by suppressor FcγRIII+ T hybridomas. Eur J Immunol. 1990; 20: 55–61.

    Article  PubMed  CAS  Google Scholar 

  20. Fridman WH. Fc Receptors and Immunoglobulin Binding Factors. FASEB J. 1991; 5: 2684–90.

    PubMed  CAS  Google Scholar 

  21. Bouchard C, Galinha A, Tartour E, Fridman WH, Sautes C. A transforming growth factor β-like immunosuppressive factor in immunoglobulin G-binding factor. J Exp Med. 1995; 182: 1717–26.

    Article  PubMed  CAS  Google Scholar 

  22. Stach RM, Rowley A. A first or dominant immunization. II Induced immunoglobulin carries transforming growth factor b and suppresses cytolytic T Cell responses to unrelated alloantigens. J Exp Med. 1993; 178: 841–52.

    Article  PubMed  CAS  Google Scholar 

  23. Teillaud C, Galon J, Zilber M-T et al. Soluble CD 16 binds peripheral blood mononuclear cells and inhibits pokeweed-mitogen (PWM)-induced responses. Blood. 1993; 82: 3081–90.

    PubMed  CAS  Google Scholar 

  24. Tartour E, de la Salle H, de la Salle C et al. Identification, in mouse macrophages and in serum, of a soluble receptor for the Fc portion of IgG (FcγR) encoded by an alternatively spliced transcript of the FcγRII gene. Intern Immunol. 1993; 5: 859–68.

    Article  CAS  Google Scholar 

  25. Araujo-Jorge T, El Bouhdidi A, Rivera M-T, Daëron M, Carlier Y. Trypanosoma cruzi infection in mice enhances the membrane expression of low-affinity Fc receptors for IgG and the release of their soluble forms. Parasite Immunol. 1993; 15: 539–46.

    Article  Google Scholar 

  26. Mathur A, Lynch RG. Increased Tg and Tm cells in BALB/c mice with IgG and IgM plasmacytomas and hybridomas. J Immunol. 1986; 136: 521–5.

    PubMed  CAS  Google Scholar 

  27. Pure E, Durie CJ, Summerill CK, Unkeless JC. Identification of soluble Fc receptors in mouse serum and the conditioned medium of stimulated B cells. J Exp Med. 1984; 160: 1836–49.

    Article  PubMed  CAS  Google Scholar 

  28. Löwy I, Brézin C, Néauport-Sautès C, Thèze J, Fridman WH. Isotype regulation of antibody production: T cell hybrids can be selectively induced to produce subclass specific suppressive immunoglobulin-binding factors. Proc Natl Acad Sci USA. 1983; 80: 2323–7.

    Article  PubMed  Google Scholar 

  29. Weinshank RL, Luster AD, Ravetch JV. Function and regulation of a murine macrophage-specific IgG Fc receptor, FcγR-a. J Exp Med. 1988; 167: 1909–25.

    Article  PubMed  CAS  Google Scholar 

  30. Luan JJ, Monteiro RC, Sautès C et al. Defective FcγRII gene expression in macrophages of NOD mice. J Immunol. 1996; 157: 4707–16.

    PubMed  CAS  Google Scholar 

  31. Mathiot C, Teillaud JL, Elmalek M et al. Correlation between serum soluble CD16 (sCD16) levels and disease stage in patients with multiple myeloma. J Clin Immunol. 1993; 13: 41–8.

    Article  PubMed  CAS  Google Scholar 

  32. Mathiot C, Mary JP, Tartour E et al. Soluble CD16 (sCD16), a marker of malignancy in individulas with monoclonal gammapathy of undetermined significance (MGUS). Br J Haematol. 1996; 95: 660–5.

    Article  PubMed  CAS  Google Scholar 

  33. Fleit HB, Kobasiuk CD, Daly C, Furie R, Levy PC, Webster RO. A soluble form of Fc gRIII is present in human serum and other body fluids and is elevated at sites of inflammation. Blood. 1992; 79: 2721–8

    PubMed  CAS  Google Scholar 

  34. Khayat D, Soubrane C, Andrieu JM et al. Changes of soluble CD16 levels in serum of HIV-infected patients:correlation with clinical and biologic prognostic factors. J Infect Dis. 1990; 161: 430–5.

    Article  PubMed  CAS  Google Scholar 

  35. Boros P, Gardos E, Bekesi GJ, Unkeless JC. Change in expression of Fc gamma RIII (CD16) on neutrophils from human immunodeficiency virus-infected individuals. Clin Immunol Immunopathol. 1990; 54: 281–9.

    Article  PubMed  CAS  Google Scholar 

  36. Astier A, de la Salle H, Moncuit J et al. Detection and quantification of secreted soluble FcγRIIA in human sera by an enzyme-liked immunoadsorbent assay. J Immunol Meth. 1993; 166: 1–10.

    Article  CAS  Google Scholar 

  37. Fridman WH, Mathiot C, Moncuit J, Teillaud JL. Fc receptors, immunoglobulin-binding factors and B chronic lymphocytic leukemia. Nouvelle Revue Française d’Hématologie. 1988; 30: 311–15.

    PubMed  CAS  Google Scholar 

  38. Lamour A, Soubrane C, Ichen M, Pennec YL, Khayat D, Youinou P. Fc-gamma receptor III shedding by polymorphonuclear cells in primary Sjögren’s syndrome. Eur J Clin Invest. 1993; 23: 97–101.

    Article  PubMed  CAS  Google Scholar 

  39. Hutin P, Lamour A, Pennec YL et al. Cell-free Fc-gamma receptor III in sera from patients with systemic lupus erythematosus:correlation with clinical and biological features. Int Arch Allerg Immunol. 1994; 103: 23–7.

    Article  CAS  Google Scholar 

  40. Welch GR, Wong HL, Wahl SM. Selective induction of FcγRIII on human monocytes by transforming-growth factor-b. J Immunol. 1990; 1990: 3444–8.

    Google Scholar 

  41. Hartneil A, Barry Kay A, Wardlaw AJ. IFN-g induces expression of FcγRIII (CD16) on human eosinophils. J Immunol. 1992; 148: 1471–8.

    Google Scholar 

  42. Te Velde AA, Huibens RJF, de Vries JE, Figdor CG. IL-4 decreases FcγR membrane expression and FcγR-mediated cytotoxic activity of human monocytes. J Immunol. 1990; 144: 3046–51.

    Google Scholar 

  43. Te Velde AA, de Wall R, Huibens RJF, de Vries JE, Figdor CG. IL-10 stimulates monocyte surface FcγR expression and cytotoxic activity. J Immunol. 1992; 149: 4048–52.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sautès, C., Galon, J., Bouchard, C., Astier, A., Teillaud, JL., Fridman, W.H. (1998). Soluble FcγR, a biological perspective. In: van de Winkel, J.G.J., Hogarth, P.M. (eds) The Immunoglobulin Receptors and their Physiological and Pathological Roles in Immunity. Immunology and Medicine Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5018-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5018-7_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6106-3

  • Online ISBN: 978-94-011-5018-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics