Skip to main content

Part of the book series: Immunology and Medicine Series ((IMME,volume 26))

Abstract

Successful host protection against bacterial infectious diseases requires recognition and destruction of potential invading pathogen by monocytes and polymorphonuclear neutrophils (PMN), the so-called ‘professional phagocytes’. Many pathogenic bacteria have evolved mechanisms to evade direct recognition by phagocytes. As a result, the most successful host strategy for phagocytic elimination of potentially virulent bacteria requires coating of the bacteria with serum components, which are in turn recognized by specific receptors on the professional phagocytes. The process of serum protein binding to potentially dangerous environmental agents, both infectious and noninfectious, is known as opsonization. It has long been known that the two most important opsonic activities in serum are antibody and complement. Patients with genetic deficiencies of either complement opsonization or antibody production have markedly increased susceptibility to bacterial infections, demonstrating that both antibody and complement are necessary for optimal host defence. Since the work of Ehlenberger and Nussenzweig in 1975 [1], it has been clear that antibody and complement cooperate in opsonization for phagocytosis. In the intervening two decades since their experiments, the molecular nature of antibody and complement receptors has been elucidated. This increased understanding has allowed many laboratories to begin to identify the molecular mechanisms involved in cooperation between these two important opsonins. The purpose of this chapter is to review current understanding of the mechanism, extent, and significance of this cooperation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ehlenberger AG, Nussenzweig V. The role of membrane receptors for C3b and C3d in phagocytosis. J Exp Med. 1977; 145: 357–71.

    Article  PubMed  CAS  Google Scholar 

  2. Brown EJ, Joiner KA, Frank MM, Paul WE, eds, Fundamental Immunology. New York: Raven Press; 1984: 645–68.

    Google Scholar 

  3. Fearon DT, Ahearn JM. Complement receptor type 1 (C3b/C4b receptor; CD35) and complement receptor type 2 (C3d/Epstein-Barr virus receptor; CD21). Curr Top Microbiol Immunol. 1990; 153: 83–98.

    Article  PubMed  CAS  Google Scholar 

  4. Ahearn JM, Fearon DT. Structure and function of the complement receptors, CRI (CD35) and CR2 (CD21). Adv Immunol. 1989; 46: 183–219.

    Article  PubMed  CAS  Google Scholar 

  5. Ross GD. Complement and complement receptors. Curr Opin Immunol. 1989; 2: 50–62.

    Article  PubMed  CAS  Google Scholar 

  6. Brown EJ. Complement receptors and phagocytosis. Curr Opin Immunol. 1991; 3: 76–82.

    Article  PubMed  CAS  Google Scholar 

  7. Myones BL, Dalzell JG, Hogg N, Ross GD. Neutrophil and monocyte cell surface pl 50,95 has iC3b receptor (CR4) activity. J Clin Invest. 1988; 82: 640–51.

    Article  PubMed  CAS  Google Scholar 

  8. Brown EJ, Lindberg FP, Horton MA, eds, Blood Cell Biochemistry. V. Macrophages and Related Cells. Matrix Receptors of Myeloid Cells. New York: Plenum Press; 1993; 11: 279–306.

    Google Scholar 

  9. Brown EJ, Lindberg FP. Leucocyte adhesion molecule in host defence against infection. Ann Med. 1996; 28: 201–8.

    Article  PubMed  CAS  Google Scholar 

  10. Griffin FM Jr, Mullinax PJ. Augmentation of macrophage complement receptor function in vitro. III. C3b receptors that promote phagocytosis migrate within the plane of the macrophage plasma membrane. J Exp Med. 1981; 154: 291.

    Article  PubMed  CAS  Google Scholar 

  11. Bianco C, Griffin FM Jr, Silverstein SC. Studies of the macrophage complement receptor. Alteration of receptor function upon macrophage activation. J Exp Med. 1975; 141: 1278–9.

    Article  PubMed  CAS  Google Scholar 

  12. Waxman FJ, Hebert LA, Cornacoff JB et al. Complement depletion accelerates the clearance of immune complexes from the circulation of primates. J Clin Invest. 1984; 74: 1329–40.

    Article  PubMed  CAS  Google Scholar 

  13. Brown EJ, Bohnsack JF, Gresham HD. Mechanism of inhibition of immunoglobulin G-mediated phagocytosis by monoclonal antibodies that recognize the Mac-1 antigen. J Clin Invest. 1988; 81: 365–75.

    Article  PubMed  CAS  Google Scholar 

  14. Arnaout MA, Todd RF III, Dana N, Melamed J, Schlossman SF, Colten HR. Inhibition of phagocytosis of complement C3-or immunoglobulin G-coated particles and of C3bi binding by monoclonal antibodies to a monocyte granulocyte membrane glycoprotein (Mol). J Clin Invest. 1983; 72: 171–9.

    Article  PubMed  CAS  Google Scholar 

  15. Krauss JC, Poo H, Xue W, Mayo-Bond L, Todd RF, Petty HR. Reconstitution of antibody-dependent phagocytosis in fibroblasts expressing Fc gamma receptor IIIB and the complement receptor type 3. J Immunol. 1994; 153: 1769–77.

    PubMed  CAS  Google Scholar 

  16. Graham IL, Lefkowith JB, Anderson DC, Brown EJ. Immune complex-stimulated neutrophil LTB4 production is dependent on beta2 integrins. J Cell Biol. 1993; 120: 1509–17.

    Article  PubMed  CAS  Google Scholar 

  17. Petty HR, Todd RF III. Receptor-receptor interactions of complement receptor type 3 in neutrophil membranes (Review). J Leukoc Biol. 1993; 54: 492–4.

    PubMed  CAS  Google Scholar 

  18. Gresham HD, Graham IL, Anderson DC, Brown EJ. Leukocyte adhesion deficient (LAD) neutrophils fail to amplify phagocytic function in response to stimulation: evidence for CDllb/CD18-dependent and-independent mechanisms of phagocytosis. J Clin Invest. 1991; 88: 588–97.

    Article  PubMed  CAS  Google Scholar 

  19. Zhou M, Todd RF III, Van de Winkel JGJ, Petty HR. Cocapping of the leukoadhesin molecules complement receptor type 3 and lymphocyte function-associated antigen-1 with Fcgamma receptor III on human neutrophils: Possible role of lectin-like interactions. J Immunol. 1993; 150: 3030–41.

    PubMed  CAS  Google Scholar 

  20. Sehgal G, Zhang K, Todd RF, Boxer LA, Petty HR. Lectin-like inhibition of immune-complex receptor-mediated stimulation of neutrophils —effects of cytosolic calcium release and Superoxide production. J Immunol. 1993; 150: 4571–80.

    PubMed  CAS  Google Scholar 

  21. Poo H, Krauss JC, Mayobond L, Todd RF, Petty HR. Interaction of Fc-gamma receptor type IIIB with complement receptor type 3 in fibroblast transfectants —evidence from lateral diffusion and resonance energy transfer studies. J Mol Biol. 1995; 247: 597–603.

    PubMed  CAS  Google Scholar 

  22. Sitrin RG, Todd RF, Petty HR et al. The urokinase receptor (CD87) facilitates CDllb/CD18-mediated adhesion of human monocytes. J Clin Invest. 1996; 97: 1942–51.

    Article  PubMed  CAS  Google Scholar 

  23. Wei Y, Lukashev M, Simon DI et al. Regulation of integrin function by the urokinase receptor. Science. 1996; 273: 1551–5.

    Article  PubMed  CAS  Google Scholar 

  24. Petty HR, Todd RF. Integrins as promiscuous signal transduction devices. Immunol Today. 1996; 17: 209–12.

    Article  PubMed  CAS  Google Scholar 

  25. Zhou M-J, Brown EJ. CR3 (Mac-1, αMβ 2, CDllb/CD18) and FcγRIII cooperate in generation of a neutrophil respiratory burst: requirement for FcγRII and tyrosine phosphorylation. J Cell Biol. 1994; 125: 1407–16.

    Article  PubMed  CAS  Google Scholar 

  26. Graham IL, Anderson DC, Holers VM, Brown EJ. Complement receptor 3 (CR3, Mac-1, integrin alpha-M, beta-2, CD1 lb/CD18) is required for tyrosine phosphorylation of paxillin in adherent and nonadherent neutrophils. J Cell Biol. 1994; 127: 1139–47.

    Article  PubMed  CAS  Google Scholar 

  27. Graham IL, Gresham HD, Brown EJ. An immobile subset of plasma membrane CDllb/CD18 (Mac-1) is involved in phagocytosis of targets recognized by multiple receptors. J Immunol. 1989; 142: 2352–8.

    PubMed  CAS  Google Scholar 

  28. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992; 69: 11–25.

    Article  PubMed  CAS  Google Scholar 

  29. Pavalko FM, Laroche SM. Activation of human neutrophils induces an interaction between the integrin β 2-subunit (CD18) and the actin binding protein α-actinin. J Immunol. 1993; 151: 3795–807.

    PubMed  CAS  Google Scholar 

  30. Griffin JA, Griffin FM Jr. Augmentation of macrophage complement receptor function in vitro. I. Characterization of the cellular interactions required for the generation of a T-lymphocyte product that enhances macrophage complement receptor function. J Exp Med. 1979; 150: 653.

    Google Scholar 

  31. Griffin FM Jr, Griffin JA. Augmentation of macrophage complement receptor function in vitro. II. Characterization of the effects of a unique lymphokine upon the phagocytic capabilities of macrophages. J Immunol. 1980; 125: 884.

    Google Scholar 

  32. Kucik DF, Dustin ML, Miller JM, Brown EJ. Adhesion activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J Clin Invest. 1996; 97: 2139–44.

    Article  PubMed  CAS  Google Scholar 

  33. Schmidt CE, Horwitz AF, Lauffenburger DA, Sheetz MP. Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol. 1993; 123: 977–91.

    Article  PubMed  CAS  Google Scholar 

  34. Greenberg S, Chang P, Wang DC, Xavier R, Seed B. Clustered syk tyrosine kinase domains trigger phagocytosis. Proc Natl Acad Sci USA. 1996; 93: 1103–7.

    Article  PubMed  CAS  Google Scholar 

  35. Indik ZK, Park JG, Hunter S, Schreiber AD. The molecular dissection of Fc gamma receptor mediated phagocytosis. Blood. 1995; 86: 4389–99.

    PubMed  CAS  Google Scholar 

  36. Borregaard N, Kjeldsen L, Rygaard K et al. Stimulus-dependent secretion of plasma proteins from human neutrophils. J Clin Invest. 1992; 90: 86–96.

    Article  PubMed  CAS  Google Scholar 

  37. Altieri DC, Bader R, Mannucci PM, Edgington TS. Oligospecificity of the cellular adhesion receptor. Mac-1 encompasses an inducible recognition specificity for fibrinogen. J Cell Biol. 1988; 107: 1893–900.

    Article  PubMed  CAS  Google Scholar 

  38. Shimizu Y, Mobley JL, Finkelstein LD, Chan ASH. Role for phosphatidylinositol 3-kinase in the regulation of β1 integrin activity by the CD2 antigen. J Cell Biol. 1995; 131: 1867–80.

    Article  PubMed  CAS  Google Scholar 

  39. Kolanus W, Nagel W, Schiller B et al. Alpha L beta 2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell. 1996; 86: 233-42.

    Google Scholar 

  40. Klarlund JK, Guilherme A, Holik JJ, Virbasius JV, Chawla A, Czech MP. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and sec 7 homology domains. Science. 1997; 275: 1927–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brown, E.J. (1998). Cooperation between IgG Fc receptors and complement receptors in host defence. In: van de Winkel, J.G.J., Hogarth, P.M. (eds) The Immunoglobulin Receptors and their Physiological and Pathological Roles in Immunity. Immunology and Medicine Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5018-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5018-7_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6106-3

  • Online ISBN: 978-94-011-5018-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics