Skip to main content

Part of the book series: Immunology and Medicine Series ((IMME,volume 26))

  • 109 Accesses

Abstract

Since the elucidation of the structure of antibodies, it has been recognized that immunoglobulins (Ig) are bifunctional molecules which assemble the products of several genes, allowing the almost infinite diversity of antigen recognition and a large array of effector and regulatory functions. Families of V genes encode the variable regions of Ig heavy (H) and light (L) chains whereas a set of C genes encodes the H and L constant regions which define Ig isotypes. Associations of the variable regions form the antigen-binding site while the C terminal constant regions form the Fc part of the Ig molecule and bear the sites for functional activities. The use of proteolytic enzymes has allowed separation of the Fc region from the rest of the molecule. An Fc-less Ig is a pure antigen-binding unit (and has therefore be called F(ab) when monovalent and F(ab)′ 2 when divalent) whereas intact molecules, after binding to antigen, exert multiple effector and regulatory functions [1,2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nezlin R. Immunoglobulin Structure and Function. In: Van Oss CJ, Van Regenmortel MHV, eds, Immunochemistry. New York: Marcel Dekker Inc; 1994: 3–45.

    Google Scholar 

  2. Fridman WH. Structure and function of immunoglobulins. In: Fridman WH, Sautès C, eds. Cell Mediated Effects of Immunoglobulins. Heidelberg: RG Landes Company, Springer; 1997: 128.

    Google Scholar 

  3. Paraskevas F, Lee ST, Orr KB, Israels G. A Receptor for Fc on Mouse B-Lymphocytes. J Immunol. 1972; 108: 1319–27.

    PubMed  CAS  Google Scholar 

  4. Fridman WH, Sautès C. Cell Mediated Effects of Immunoglobulins. Heidelberg: RG Landes Company, Springer; 1997: 1–201.

    Book  Google Scholar 

  5. Hulett MD, Hogarth MP. Molecular basis of the Fc receptor function. Adv Immunol. 1994; 57: 1–127.

    Article  PubMed  CAS  Google Scholar 

  6. Metzger H, Alcaraz G, Hohman R, Kinet JP, Pribluda V, Quarto R. The receptor with high affinity for immunoglobulin E. Annu Rev Immunol. 1986; 4: 419–70.

    Article  PubMed  CAS  Google Scholar 

  7. Capron M, Grangette C, Torpier G, Capron A. The second receptor for IgE in eosinophil effector function. Chem Immunol. 1989; 47: 128–78.

    Article  PubMed  CAS  Google Scholar 

  8. Coico RF, Siskind GW, Thorbecke J. Role of IgD and T cells in the regulation of humoral immune response. Immunol Rev. 1988; 105: 45–68.

    Article  PubMed  CAS  Google Scholar 

  9. Fridman WH. Fc Receptors and immunoglobulin-binding factors. FASEB J. 1991; 5: 2684–90.

    PubMed  CAS  Google Scholar 

  10. Ravetch JV, Kinet JP. Fc receptors. Annu Rev Immunol. 1991; 9: 457–92.

    Article  PubMed  CAS  Google Scholar 

  11. Ran M, Katz B, Kimchi N. et al. In vivo acquisition of FcγRII expression on polyoma virus transformed cells derived from tumors of long latency. Cancer Res. 1991; 51: 612–8.

    PubMed  CAS  Google Scholar 

  12. Daëron M. Fc receptor biology. Annu Rev Immunol. 1997; 15: 203–34.

    Article  PubMed  Google Scholar 

  13. Bonnerot C, Amigorena S, Choquet D, Pavlovich R, Choukroun V, Fridman WH. Role of associated γchain in tyrosine kinase activation via murine FcγRIII. EMBO J. 1992; 11: 2747–57.

    PubMed  CAS  Google Scholar 

  14. Amigorena S, Salamero J, Davoust J, Fridman WH, Bonnerot C. Tyrosine-containing motif that transduces cell activation signals also determines internalization and antigen presentation via type III receptors for IgG. Nature. 1992; 358: 337–41.

    Article  PubMed  CAS  Google Scholar 

  15. Zhou MJ, Poo H, Todd III RF, Petty HR. Surface-bound immune complexes trigger transmembrane proximity between complement receptor type 3 and the neutrophil’s cortical microfilaments. J Immunol. 1992; 148: 3550–3.

    PubMed  CAS  Google Scholar 

  16. Amigorena S, Bonnerot C, Drake J. et al. Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science. 1992; 256: 1808–12.

    Article  PubMed  CAS  Google Scholar 

  17. Muta T, Kurosaki T, Misulovin Z, Sanchez M, Mussenzweig MC, Ravetch JV. A13-aminoacid motif in the cytoplasmic domain of FcγRIIB modulates B cell receptor signalling. Nature. 1994; 368: 70–3.

    Article  PubMed  CAS  Google Scholar 

  18. Daëron M, Latour S, Malbec O. et al. The same tyrosine-based inhibition motif in the intracytoplasmic domain of FcγRIIB, regulates negatively BCR-, TCR-and FcR-dependent cell activation. Immunity. 1995; 3: 635–46.

    Article  PubMed  Google Scholar 

  19. D’Ambrosio D, Hippen KH, Minskor T. SA. et al. Recruitment and activation of PTP1C in negative regulation of antigen receptor signaling by FcγRIIBl. Science. 1995; 268: 293–6.

    Article  PubMed  Google Scholar 

  20. Ono M, Bolland S, Tempst P, Ravetch JV. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcγRIIB. Nature. 1996; 383: 263–6.

    Article  PubMed  CAS  Google Scholar 

  21. Scharenberg AM, Kinet JP. The emerging field of receptor-mediated inhibitory signaling: SHP or SHIP? Cell. 1996; 87: 961–4.

    Article  PubMed  CAS  Google Scholar 

  22. Fridman WH, Rabourdin-Combe C, Neauport-Sautès C, Gisler RH. Characterization and function of T cell Fcγreceptor. Immunological Rev. 1981; 56: 51–88.

    Article  CAS  Google Scholar 

  23. Sautès C. Soluble Fc receptor. In: Fridman WH, Sautès C, eds, Cell Mediated Effects of Immunoglobulins. Heidelberg: RG Landes Company, Springer; 1997: 139–63.

    Chapter  Google Scholar 

  24. Lecoanet-Henchoz S, Gauchat J, Aubry J. et al. CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD 11 b-CD 18 and CD 11 c-CD 18. Immunity. 1995; 3: 119–25.

    Article  PubMed  CAS  Google Scholar 

  25. Galon J, Gauchat JF, Mazières N. et al. Soluble Fcγreceptor type III (FcγRIII, CD16) triggers cell activation through interaction with complement receptors. J Immunol. 1996; 157: 1184–92.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fridman, W.H. (1998). Introduction to the field. In: van de Winkel, J.G.J., Hogarth, P.M. (eds) The Immunoglobulin Receptors and their Physiological and Pathological Roles in Immunity. Immunology and Medicine Series, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5018-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5018-7_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6106-3

  • Online ISBN: 978-94-011-5018-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics