Skip to main content

Tunneling Transport and Reliability Evaluation in Extremely Thin Gate Oxides

  • Chapter
  • 371 Accesses

Part of the book series: NATO Science Series ((ASHT,volume 47))

Abstract

Direct tunnel current through n+poly-Si /1.6 to 4.8nm thick SiO2/p-Si(100) structures has been calculated on the basis of the WKB approximation. The measured current versus oxide voltage characteristics are well explained by the theory with the only one fitting parameter which is the tunneling electron effective mass m*DT = (0.29±0.02)m0 independent of the oxide thickness. It is found that the quasi-breakdown of the oxides under constant current stressing in the direct tunneling regime is accompanied with multivalued gate-voltage fluctuations, indicating dynamic growth or shrinkage of a conducting filament near the SiO2/Si interface. The areal size and length of the filament are evaluated from the analysis of the stress-induced leakage current. The charge to breakdown for oxides thinner than 3 nm exceeds 104C/cm2 at an oxide field strength of 17 MV/cm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Momose, H. S., Nakamura, S., Ohguro, T., Yoshitomi, T., Morifuji, E., Morimoto, T., Katsumata, Y., and Iwai, H. (1997) Uniformity and reliability of 1.5nm direct tunneling gate oxide MOSFETs, 1997 Symposium on VLSI Technol., Digest of Technical Papers, 15–16.

    Google Scholar 

  2. Buchanan, D. A., and Lo, S.-H. (1996) Growth characterization and the limits of ultrathin Si02-based dielectrics for future CMOS applications, The Physics and Chemistry of Si02 and Si-Si02 Interface-3, editors Massoud, H. Z., Poindexter, E. H., and Helms, C. R., The Electrochmical Society, 3–14.

    Google Scholar 

  3. Depas, M., Heyns, M. M., Nigam, T., Kenis, K., Sprey, H., Wilhelm, R., Crossy, A., Sofield, C. J., and Graef, D. (1996) Critical processes for ultrathin gate oxide integrity, The physics and Chemistry of Si02 and Si-Si02 Interface-3, editors Massoud, H. Z., Poindexter, E. H., and Helms, C. R., The Electrochmical Society, 352–366.

    Google Scholar 

  4. Schuegraf, K. F., King, C. C., and Hu, C. (1992) Ultrathin silicon dioxide leakage current and scaling limit, 1992 Symposium on VLSI Technol., Digest of Technical Papers, 18–19.

    Google Scholar 

  5. Nagano, S., Tsuji, M., Ando K., Hasegawa, E., and Ishitani, A. (1994) Mechanism of leakage current through nanoscale Si02 layer, J. Appl. Phys. 75, 3530–3535.

    Article  CAS  Google Scholar 

  6. Yoshida, T., Imafuku, D., Alay, J. L., Miyazaki, S., and Hirose, M. (1995) Quantitative analysis of tunneling current through ultrathin gate oxides, Jpn. J. Appl. Phys. 34, L903–L906.

    Article  CAS  Google Scholar 

  7. Depas, M., Van Mheirhaedhe, R. L., Laflere, W. H., and Cardon, F. (1993) Tunnel oxides grown by rapid thermal oxidation, Microelectronic Engineering, 22, 61–64.

    Article  CAS  Google Scholar 

  8. Hiroshima, M., Yasaka, T., Miyazaki, S., and Hirose, M. (1994) Electron tunneling through ultrathin gate oxide formed on hydrogen-terminated Si(100) surfaces, Jpn. J. Appl. Phys, 33, 395–398.

    Article  CAS  Google Scholar 

  9. Brar, B., Wilk, G. D., and Seabough, A. C. (1996) Direct extraction of the electron tunneling effective mass in ultrathin Si02, Appl. Phys. Lett. 69, 2728–2730

    Article  CAS  Google Scholar 

  10. Alay, J. L., and Hirose, M. (1997) The valence band alignment at ultrathin SiO2/Si interfaces, J. Appl. Phys. 81, 1606–1608.

    Article  CAS  Google Scholar 

  11. Lo, S.-H., Buchanan, D. A., Taur, Y., Han, L.-K., and Wu, E. (1997) Modeling and characterization of nand p’-polysilicon-gated ultrathin oxides (21–26A), 1997 Symposium on VLSI Technol., Digest of Technical Papers, 149–150.

    Google Scholar 

  12. Depas, M., Degraeve, R., Nigam, T., Groeseneken, G., and Heyns, M. M.(1997) Reliability of ultra-thin gate oxide below 3nm in the direct tunneling regime, Jpn. J. Appl. Phys. 36, 1602–1608.

    Article  CAS  Google Scholar 

  13. Okada, K., and Kawasaki, S. (1995) New dielectric breakdown model of local wearout in thin silicon dioxides, Ext. Abstracts of 1995 Intern. Conf. on Solid Devices and Materials, 473–475.

    Google Scholar 

  14. Lee, S. -H., Cho, B.-J., Lo, J.-C., and Choi, S.-H. (1994) Quasi-breakdown of ultrathin gate oxide under high field stress, Tech. Dig. IEDM (IF,FF, Piscataway, 1994) 605–608.

    Google Scholar 

  15. Degraeve, R., Groeseneken, G., Bellens, R., Depas, M., and Meas, H. (1995) A consistent model for the thickness dependence of intrinsic breakdown in ultrathin oxides, Tech. Dig. IEDM (IEEE, Piscataway, 1995) 863–866.

    Google Scholar 

  16. Yoshida, T., Miyazaki, S., and Hirose, H. (1996) Analytical modeling of quasi-breakdown of ultrathin gate oxides under constant current stress, Ext. Abstracts of 1996 Intern. Conf. on Solid Devices and Materials, 539–541.

    Google Scholar 

  17. Taniguchi, K., unpublished.

    Google Scholar 

  18. Hasegawa, E., Akimoto, K., Tsukiji, M., Kubota, T., and Ishitan, A. (1993) Influence of the structural transition layer on the reliability of thin gate oxides, Ext. Abstracts of 1993 Intern. Conf. on Solid Devices and Materials, 86–88.

    Google Scholar 

  19. Gruntharner, F. J., and Grunthaner, P. J.(1986) Chemical and electronic structure of the Si02/Si interface, Mat. Sci. Rep. 1, 148.

    Google Scholar 

  20. Miyazaki, S., Nishimura, H., Fukuda, M., Ley, L., and Ristein, J. (1997) Structure and electronic states of ultrathin Si02 thermally grown on Si(100) and Si(111) surfaces, Appl. Sur. Sci., 113/114, 585–589.

    Google Scholar 

  21. Morino, K., Miyazaki, S., and Hirose, M. (1997) Phosphorous incorporation in ultrathin gate oxides and its impact to the network structure, to be published in Ext. Abstracts of 1997 Intern. Conf. on Solid State Devices and Materials.

    Google Scholar 

  22. Yamazaki, Y., Miyazaki, S., Bjorkman, C. H., Fukuda, M., and Hirose, M. (1994) Infrared spectra of ultrathin Si02 grown on Si surface, Mat. Res. Soc. Synip. Proc. 318, 418–424.

    Google Scholar 

  23. Okada, K.(1997) A new dielectric breakdown mechanism in silicon dioxides, 1997 Symposium on VLSI Technol., Digest of Technical Papers, 143–144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hirose, M., Mizubayashi, W., Morino, K., Fukuda, M., Miyazaki, S. (1998). Tunneling Transport and Reliability Evaluation in Extremely Thin Gate Oxides. In: Garfunkel, E., Gusev, E., Vul’, A. (eds) Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices. NATO Science Series, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5008-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5008-8_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5008-8

  • Online ISBN: 978-94-011-5008-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics