Skip to main content

Isotopic Labeling Studies of Oxynitridation in Nitric Oxide (NO) of Si and SiO2

  • Chapter
Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices

Part of the book series: NATO Science Series ((ASHT,volume 47))

Abstract

Rapid thermal oxynitridation in nitric oxide (NO) of a thick (14 nm) Si02 film grown on Si(001) is studied as a first stage towards understanding of atomic transport mechanisms occuring during NO annealing of thin SiO2 films. The SiO2 films were grown in an ultra high vacuum rapid thermal processing (RTP) furnace in static pressure of natural O2 (16O2). These films were then annealed in N and 180-enriched NO (15N18O) for 20 and 80 s. Total amounts of nitrogen and oxygen (areal densities in at.cm-2) and heavy isotopes depth distribution were measured using non resonant and resonant nuclear reactions analysis. The results are discussed in terms of atomic depth profiles and growth mechanisms. These first results are more likely explained by two mechanisms occuring in parallel. In the first one, NO diffuses through the silica network without reacting with it and both N and O are fixed in the near interface region. In the second one, 18O is fixed near the oxide surface due to a mechanism related with a step-by-step motion of network oxygen atoms, by a simple diffusion process, induced by the presence of network defects, involving O only. This latter mechanism leads mostly to an exchange of oxygen atoms between the oxide network and the gas phase.

Direct oxynitridation of Si(001) in nitric oxide (NO) is studied as a function of as pressure. The dielectric films were grown in the RTP furnace in static pressures of 15N and 18O enriched NO (15N18O). The nuclear reactions techniques mentioned above were employed to analyse the dielectric films. The thicknesses of the oxynitrides formed in NO never exceeded 3 nanometers, in our thermal treatments conditions. Moreover, the growth rates of these films are lower compared to N2O growth rates, due to the higher amount of nitrogen atoms fixed in the films. At 1050 °C, for isochronal thermal treatments, the amounts of nitrogen fixed in the films decreases as the pressure P of NO increases (in the range 1 to 100 hPa) suggesting that nitrogen atoms may be fixed via a vacancy mechanism. The amount of nitrogen atoms was found to support a P-1/4 law, whereas in N2O the nitrogen amount varies as P1/2. The areal densities of oxygen atoms are consistent with a P1/4 law, as in the case of N2O oxynitridation. Angle Resolved

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Terman, L.M. (1997) The impact of device scaling limits, Applied Surface Science 117/118 1–10.

    Article  Google Scholar 

  2. Hara H. (1997) Some issues yet to be solved for the age of 0.1 um technologies, Applied Surface Science 117/118 11–19.

    Article  Google Scholar 

  3. Bohr M.T. (1996) Technology development strategies for the 21st century, Applied Surface Science 100/101 534–540.

    Article  Google Scholar 

  4. The National Technology Roadmap to Semiconductors (1994), Semiconductor Industries Association.

    Google Scholar 

  5. Ono M. et al. (1995) A 40 nm gate length N-MOSFET, IEEE Trans. Electron Devices ED-42 1822–1830.

    Article  Google Scholar 

  6. Hegde R.I., Maiti B., and Tobin P.J. (1997) Growth and Film Characteristics of N2O and NO Oxynitride Gate and Tunnel Dielectrics, J. Electrochem. Soc. 144 1081–1086.

    Article  CAS  Google Scholar 

  7. Kim K., Hee Lee Y., Suh M.-S., Youn C.-J., Lee K.-B, and Jae Lee H. (1996), Thermal Oxynitridation of Silicon in N2O Ambients, J. Electrochem. Soc. 143 3372–3376.

    Article  CAS  Google Scholar 

  8. Fukuda H., Koyama N., Endoh T., Nomura S. (1997) Growth kinetics of nanoscale SiO2 layer in a nitric oxide (NO) ambient, Applied Surface Science 113/114 595–599.

    Article  Google Scholar 

  9. Wrixon R.,Twomey A., O’Sullivan P., and Mathewson A. (1995), Enhanced Thickness Uniformity and Electrical Performance of Ultrathin Dielectrics Grown by RTP Using Various N2O Oxynitridation Processes, J. Electrochem. Soc. 142 2738–2742.

    Article  CAS  Google Scholar 

  10. Arakawa T., Matsumoto R., (1997), Impact of nitrogen concentration profile in silicon oxynitride films on stress-induced leakage current, Applied Surface Science, 113/114 605–609.

    Article  Google Scholar 

  11. Tsamis C., Kouvastos D.N., and Tsoukalas D. (1996) Influence of N2O oxidation temperature on point defect injection kinetics in the high temperature regime, App. Phys. Lett. 69 2725–2727.

    Article  CAS  Google Scholar 

  12. Trimaille I., Ganem J-J., (1997), Isotopic tracing of oxygen during thermal growth of thin films of SiO2 on Si in dry 02, Brazilian Journal of Physics, 27 293–302.

    CAS  Google Scholar 

  13. Amsel G., Nadai J.P., d’Artemare E., David D., Girard E., and Moulin J. (1971) Microanalysis by the direct observation of nuclear reactions using a 2 MeV Van de Graaff, Nucl. Instrum. Meth. 92 481–498.

    Article  CAS  Google Scholar 

  14. Ganem J-J., Rigo S., Trimaille I., Lu G-N., Molle P., (1992), Deuteron beam analysis of rapid thermal nitridation of silicon and thin SiO2 films, Nucl. Instrum. Meth. B64 778–783.

    Google Scholar 

  15. Rigo S. (1992) Nuclear microanalysis study of the growth of thin dielectric films on silicon by classical and rapid thermal treatments, Nucl. Instrum. Meth. B64 1–11.

    CAS  Google Scholar 

  16. Maillot C., Roulet H., Dufour G., Rochet F., and Rigo S. (1986) Study of atomic transport mechanisms during thermal nitridation in ammonia using 15N and D labelled gas, Applied Surface Science 26 326–334.

    Article  CAS  Google Scholar 

  17. Battistig G., Amsel G., d’Artemare E., and Vickridge I. (1991) A very narrow resonance in 18O(p,a)15N near 150 keV. Application to isotopic tracing. I. Resonance width measurement, Nucl. Instrum. Meth. B61 369–376.

    CAS  Google Scholar 

  18. Battistig G., Amsel G., d’Artemare E., and Vickridge I. (1992) A very narrow resonance in 18O(p,a)15N near 150 keV. Application to isotopic tracing. II. High resolution depth profiling of 180, Nucl. Instrum. Meth. B66 1–10.

    CAS  Google Scholar 

  19. Amsel G., Maurel B., (1983), High resolution techniques for nuclear reaction narrow resonance width measurements and for shallow depth profiling,Nucl. Instrum. Meth. 218 183–196.

    Article  CAS  Google Scholar 

  20. Vickridge I. and Amsel G. (1990) SPACES: a PC implementation of the stochastic theory of energy loss for narrow-resonance depth profiling, Nucl. Instrum. Meth. B45 6–11

    CAS  Google Scholar 

  21. Amsel G., and Vickridge I. (1990) Analytic calculation for some useful depth profiles of the linear expansion coefficients used in SPACES, Nucl. Instrum. Meth. B45 12–15.

    CAS  Google Scholar 

  22. Himpsel, J., McFeely F. R., Taleb-Ibrahimi, A., Yarmoff J.A., and Hollinger, G. (1988) Microscopic structure of the SiO2/Si interface, Phys. Rev. B38 6084–6096.

    Google Scholar 

  23. Rigo, S. (1988) Si oxidation mechanisms as studied by oxygen tracer methods, in C.R. Helms and B.E. Deal (eds.), The Physics and Chemistry of SiO 2 and the Si-SiO 2 Interface, Plenum Press, New York, pp. 75–84.

    Google Scholar 

  24. Trimaille I., Rigo S., (1989), Use of 18O isotopic labelling to study thermal dry oxidation of silicon as a function of temperature and pressure, Applied Surface Science 39 65–80.

    Article  CAS  Google Scholar 

  25. Gusev E.P., Lu H.C., Gustafsson T., Garfunkel E., Green M.L. Brasen D., (1997), The composition of ultrathin silicon oxynitrides thermally grown in nitric oxide, J. Appl. Phys. 82 896–898.

    Article  CAS  Google Scholar 

  26. Bouvet, D., Clivaz, P.A., Dutoit, M., Coluzza, C., Almeida, J., Margaritondo, G, Pio, F. (1996) Influence of nitrogen profile on electrical characteristics of furnace or rapid thermally nitrided silicon dioxide films, J. Appl. Phys. 79 7114–7122.

    Article  CAS  Google Scholar 

  27. Baumvol, I.J;R., Stedile, F.C., Ganem, J-J., Trimaille, I., Rigo, S., (1997), Isotopic tracing during rapid thermal growth of silicon oxynitride films on Si in O2, NH3, and N2O, Appl. Phys. Lett. 70 2007–2009.

    Article  CAS  Google Scholar 

  28. Carr, E.C., Ellis, K.A., and Buhrman, R.A. (1995) N depth profiles in thin SiO2 grown or processed in N2O: The role of atomic oxygen, App. Phys. Lett. 66 1492–1494.

    Article  CAS  Google Scholar 

  29. Trimaille, I., Stedile, F.C., Ganem, J.-J., Baumvol, I.J.R., and Rigo, S. (1996) Mechanisms of thermal growth of very thin films of SiO2 on Si(001) in dry O2, in H.Z. Massoud, E.H. Pointdexter, and C.R. Helms (eds.), The Physics and Chemistry of SiO 2 and the Si-SiO 2 Interface-3, The Electrochemical Society, Pennington, pp. 59–71.

    Google Scholar 

  30. Philibert J. (1991) atoms movements diffusion and mass transport in solids, Les Editions de Physique, Les Ulis. The reader may refer also to Crank J. (1975) The Mathematics of Diffusion, Clarendon Pess, Oxford.

    Google Scholar 

  31. Ganem, J-J., Trimaille, I., André, P., Rigo, S., Stedile, F.C., Baumvol, I.J.R., (1997) Diffusion of near surface defects during the thermal oxidation of silicon, J. Appl. Phys. 81 8109–8111.

    Article  CAS  Google Scholar 

  32. Stedile, F.C., Baumvol, I.J.R., Ganem, J-J., Rigo, S., Trimaille, I., Battistig, G., Schulte, W.H., Becker H.W. (1994), IBA study of the growth mechanisms of very thin silicon oxide films:the effect of wafer cleaning, Nucl. Instrum. Meth. B85 248–254.

    Google Scholar 

  33. Gosset, L.G., Ganem, J.-J., Trimaille, I., Rigo, S., Baumvol, I.J.R. (unpublished).

    Google Scholar 

  34. Bruggeman, D.A.G. (1935), Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten and Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. Phys. 24 (Leipzig) 636–679.

    Article  CAS  Google Scholar 

  35. Tao, Y., Lu, Z.H., Graham, M.J., Tay, S.P., (1988) X-ray photoelectron spectroscopy and x-ray absorption near-edge spectroscopy study of SiO2/Si(100), J. Vac. Sci. Technol. B12 2500–2503.

    Google Scholar 

  36. Maillot, C., Roulet, H., and Dufour, G. (1984) Thermal nitridation of silicon:An XPS and LEED investigation, J. Vac. Sci. Technol. B2 316–319.

    Google Scholar 

  37. Kamath A., Kwong D.L., Sun Y.M., Blass P.M., Whaley S., White J.M., (1997) Oxidation of Si(100) in nitric oxide at low pressures: an x-ray photoelectron spectroscopy study, Appl. Phys. Lett. 70 63–65.

    Article  CAS  Google Scholar 

  38. Lu H.C., Gusev E.P., Gustafsson T., Garfunkel E., Green M.L., Brasen D., Feldman L.C. (1996), High resolution ion scattering study of silicon oxynitridation, Appl. Phys. Lett. 69 2713–2715.

    Article  Google Scholar 

  39. Ganem, J.-J., Rigo, S., Trimaille, I., Baumvol, I.J.R., and Stedile, F.C. (1996) Dry oxidation mechanisms of thin dielectric films under N2O using isotopic tracing methods, Appl. Phys. Lett. 68 2366–2368.

    Article  CAS  Google Scholar 

  40. Yao, Z.-Q. (1995) The nature and distribution of nitrogen in silicon oxynitride grown on silicon in a nitric oxide ambient, J. Appl. Phys. 78 2906–2912.

    Article  CAS  Google Scholar 

  41. Bhat, M., Yoon, G.W., Kim, J., Kwong, D.L., Arendt, M. and White J.M. (1994) Effects of NH3 nitridation on oxides grown in pure N2O ambient, Appl. Phys. Lett. 64 2116–2118.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Trimaille, I. et al. (1998). Isotopic Labeling Studies of Oxynitridation in Nitric Oxide (NO) of Si and SiO2 . In: Garfunkel, E., Gusev, E., Vul’, A. (eds) Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices. NATO Science Series, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5008-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5008-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5008-8

  • Online ISBN: 978-94-011-5008-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics