Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 47))

  • 369 Accesses

Abstract

We present preliminary quantum chemical results for the Si(100)/SiO2 interface. The interface is modelled by the superposition of three slabs: 1) four layers of silicon crystal to represent the silicon part; the bottom layer is saturated by hydrogen atoms whereas the top layer is at the interface. 2) a layer of oxygen atoms “adsorbed” on this top silicon layer; the interface may thus be primarily viewed as an oxidative adsorption of oxygen. Reconstruction at saturation is weak. The oxidation of the surface silicon atoms under oxygen adsorption leads to Si atoms that have different oxidation numbers, in agreement with XPS results. 3) a few layers of silica added epitaxially; the silica distorts to adapt to the geometry of the silicon crystal beneath. Only half of the oxygen layer is covered by the Si(+IV) ions of the silica. The interface model that results is close to that proposed by Ohdomari et a1. 1 2 but differs by fine geometric details and does not proceed from the same construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ohdomari, I., Akatsu, H., Yamakoshi, Y. and Kishimoto, K. (1987) Study of the interfacial structure between Si(100) and thermally grown Si02 using a ball-and-spoke model J. Appl. Phys., 62, 3751–3754.

    Article  Google Scholar 

  2. Ohdomari, I., Akatsu, H., Yamakoshi, Y. and Kishimoto, K. (1987) The structural models of the Si/Si02 interface J. of Non-Crystalline Solids, 89, 239–248.

    Article  CAS  Google Scholar 

  3. Engel, T. (1993) The interaction of molecular and atomic oxygen with Si(100) and Si(111) Surface Science Reports, 18, 91–144.

    Article  CAS  Google Scholar 

  4. Balk, P. (1988) The Si/Si02 System Material Science Monographs, 32

    Google Scholar 

  5. Fair, R. B. Microelectronics Processing: Chemical Engineering Aspects American Chemical Society, Whasington, DC,(1989).

    Google Scholar 

  6. Sofield, C. J. and Stoneham, A. M. (1995) Oxidation of silicon: the VLSI dielectric? Semiconductor Science and Technology 10, 215–244.

    Article  CAS  Google Scholar 

  7. Dovesi, R., Pisani, C., Roetti, C., Causa, M. and Saunders, V. R. (1988) Crystal, QCPE Program n°577, Indiana University, Indiana

    Google Scholar 

  8. Dovesi, R., Saunders, V. R., Roetti, C., Causa, M., Harrison, N. M., Orlando, R. and Apra, E. (1996) Crystal9s, users manual, University of Torino, Torino

    Google Scholar 

  9. Perdew, J. P. Unified Theory of Exchange and Correlation Beyond The Local Density Approximation Nova Science,New York (1991).

    Google Scholar 

  10. Pisani, C., Dovesi, R. and Roetti, C. Hartree-Fock Ab Initio Treatment of Crystalline Systems 48; Lecture Notes in Chemistry, Springer Verlag,Berlin Heildeberg New York London Paris Tokyo (1988).

    Book  Google Scholar 

  11. Poirier, R. A. and Peterson, M. (1989) Monstergauss, Dept. of Chemistry Memorial University of New foundland, St. John’s, Dept. of Chemistry Memorial University of New foundland, St. John’s, Newfoundland, Canada.

    Google Scholar 

  12. Bouteiller, Y., Mijoule, C., Nizam, M., Barthelat, J. C., Daudey, J. P., Pelissier, M. and Silvi, B. (1988) Extended gaussian-type valence basis sets for calculations involving non-empirical core pseudopotentials Mol. Phys., 65 295.

    Google Scholar 

  13. Silvi, B., Jolly, L.-J. and D’Arco, P. (1992) Pseudopotential periodic Hartree-Fock study of the cristobalite to stishovite phase transition J. Mol. Struct., 260 1–9.

    Google Scholar 

  14. Durand, P. and Barthelat, J. C. (1975) A theoretical Method to Determine Atomic Pseudopotentials for Electronic Structure Calculations of Molecules and Solids Theor. Chim. Acta, 38 283–302.

    Article  CAS  Google Scholar 

  15. Becke, A. D. (1993) A new mixing of HF and LDF theories J. Chem. Phys., 98 1372–1377.

    Article  CAS  Google Scholar 

  16. Curtiss, L. A., Raghavachari, K. and Pople, J. A. (1993) Gaussian-2 theory using reduced Moller-Plesset orders J. Chem. Phys., 98 1293–1298.

    Article  CAS  Google Scholar 

  17. Liu, Q. and Hoffmann, R. (1995) The Bare and Acetylene Chemisorbed Si(001) Surface, and the Mechanism of Acetylene Chemisorption J. Am. Chem. Soc., 117 4082–4092.

    Article  CAS  Google Scholar 

  18. Markovits, A. and Minot, C.; (1996) The oxidation of the perfect Si(100) surface. Ab initio periodic pseudopotential Hartree-Fock calculations., Varna, World Scientific Press, Ed.J. Marshall.

    Google Scholar 

  19. Schlier, R. E. and Farnsworth, H. E. (1959) Structure and Adsorption Characteristics of Clean Surfaces of Germanium and Silicon J. Chem. Phys., 30 917–926.

    Article  CAS  Google Scholar 

  20. Roberts, N. and Needs, R. J. (1990) Total energy calculations of dimer reconstructions on the silicon (001) surface Surface Science, 236, 112–121.

    Article  CAS  Google Scholar 

  21. Miyamoto, Y. and Oshiyama, A. (1991) Energetics in the initial stage of oxidation of silicon Phys. Rev. B, 43 9287–9290.

    Article  CAS  Google Scholar 

  22. Markovits, A. and Minot, C. (1997) Ab initio periodic pseudopotential HartreeFock calculations of 02 dissociation on perfect Si(100) surface J. Mol. Catal.A, 119 185–193.

    Article  CAS  Google Scholar 

  23. Hoshino, T., Tsuda, M., Oikawa, S. and Ohdomari, I. (1993) Theoretical consideration on dimer vacancy images in the STM observations of Si(001) surfaces in terms of the adsorption of 02 molecules Surf Sci. Letters, 291 L763–L767.

    CAS  Google Scholar 

  24. Silvestre, C. and Shayegan, M. (1991) Initial Stages of the Reaction of Oxygen with Si(100) Solid State Commun., 77 735–738.

    Article  CAS  Google Scholar 

  25. Ibach, H., Bruchmann, H. D. and Wagner, H. (1982) Vibrational Study of the Initial Stages of the Oxidation of Si(111) and Si(100) Surfaces Appl. Phys. A, 29, 113–124.

    Article  Google Scholar 

  26. Höfer, U., Morgen, P., Wurth, W. and Umbach, E. (1985) Metastable Molecular Precursor for the Dissociative Adsorption of Oxygen on Si(111) Phys. Rev. Lett., 55, 2979–2982. 145

    Article  Google Scholar 

  27. Hoshino, T., Tsuda, M., Oikawa, S. and Ohdomari, I. (1994) Mechanisms of the adsorption of oxygen molecules and the subsequent oxidation of the reconstructed dimers on Si(001) surfaces Phys. Rev. B, 50 14999–15008.

    Article  CAS  Google Scholar 

  28. Zheng, X. M. and Smith, P. V. (1990) The Chemisorption Behavior of Oxygen on the Si(100) Surface Surf. Sci., 232 6–16.

    Article  CAS  Google Scholar 

  29. Miyamoto, Y. and Oshiyama, A. (1990) Atomic and electronic structures of oxygen on Si(100) surfaces: Metastable adsorption sites Phys. Rev. B, 41 12680–12686.

    Article  CAS  Google Scholar 

  30. Hollinger, G. (1983) Multiple-Bonding Configurations for Oxygen on Silicon Surfaces Phys. Rev. B, 28 3651–3653.

    CAS  Google Scholar 

  31. Himpsel, F. J., McFeely, F. R., Taleb-Ibrahimi, A., Yarmoff, J. A. and Hollinger, G. (1988) Microscopic structure of the SiO2/Si interface Physical review B, 38 6084–6096.

    Article  CAS  Google Scholar 

  32. Pasquarello, A., Hybertsen, M. S. and Car, R. (1996) Comparison of structurally relaxed models of the Si(001)-Si02 interface based on different crystalline oxide forms. Applied Surface Science, 104/105 317–322.

    Article  Google Scholar 

  33. Hane, M., Miyamoto, Y. and Oshiyama, A. (1990) Atomic and electronic structures of an interface between silicon and ß-cristobalite Phys. Rev. B, 41 12637–12640.

    Article  CAS  Google Scholar 

  34. Lu, Z. H., Graham, M. J., Jiang, D. T. and Tan, K. H. (1993) Si/SiO2 interface studied by Al Ka x-ray and synchroton radiation photoelectron spectroscopy Appl. Phys. Lett., 63 2941–2943.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Markovits, A., Minot, C. (1998). A theoretical model of the Si/SiO2 interface. In: Garfunkel, E., Gusev, E., Vul’, A. (eds) Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices. NATO Science Series, vol 47. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5008-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5008-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5008-8

  • Online ISBN: 978-94-011-5008-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics