Skip to main content

Structural and Magnetic Investigations of Ferromagnets by NMR. Application to Magnetic Metallic Multilayers

  • Conference paper
Frontiers in Magnetism of Reduced Dimension Systems

Part of the book series: NATO ASI Series ((ASHT,volume 49))

Abstract

Spectroscopies based on hyperfine interactions such as Nuclear Magnetic Resonance (or Mössbauer effect, Perturbed Angular Correlation,…) use nuclei as local probes of the magnetic (or electric) properties of the electrons on their site and in the close vicinity. Their basic yield is the strength of the magnetic hyperfine field HF or the electric field gradient EFG acting on nuclei in the material. As such HF and EFG data are of fundamental interest although a comparison with theory involves heavy calculations. Their origin will not be discussed in details here. The emphasis will be put rather on the information one can get about the local structure and magnetic properties of metallic systems, magnetic multilayers and thin films, without going into detailed electronic structure calculations. Indeed the hyperfine field HF, the electric field gradient EFG are brought about by the spatial distribution of charges and magnetic moment around the observed nucleus and, thus, they are signatures of the various topological, chemical and magnetic environments in the material. In this chapter, the stress is put only on the magnetic hyperfine interaction1 and its distribution in the sample, in short, the NMR spectrum. This spectrum contains the relevant information for sample characterization: chemical and topological short range order, local moments and magnetic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A., (1962) The Principles of Nuclear Magnetism,Oxford Clarendon Press, Oxford

    Google Scholar 

  2. Slichter, C.P., (1990) Principles of magnetic resonance, Springer-Verlag, Heidelberg

    Google Scholar 

  3. Winter,J. (1971) Magnetic Resonance in Metals, Oxford University Press, Oxford

    Google Scholar 

  4. Panissod, P. (1986) Nuclear Magnetic Resonance in Gonser U. (ed.) Microscopic Methods in Metals, Springer Verlag, pp.365–408

    Chapter  Google Scholar 

  5. Freeman, A. J. and Watson, R. E., (1965) Hyperfine interactions in magnetic materials in Rado, G. T. and Suhl, H. (eds.) Magnetism, Academic Press, New York, Vol. 2A, pp.167–305

    Google Scholar 

  6. Narath, A., (1967) Nuclear magnetic resonance in magnetic and metallic solids in Freeman A.J., Frankel R.B. (eds.) Hyperfine interactions, Academic Press, New York, pp. 287–363

    Google Scholar 

  7. Mössbauer, R.L. and Clauser, M.J. (1967), Recoilless absorption of gamma rays and studies of nuclear hyperfine interactions in solids, in ibidem, pp. 497–551

    Google Scholar 

  8. Kobayashi, S., Asayama, K. and Itoh, J. (1966), Nuclear magnetic resonance in Co alloys, J. Phys. Soc. Japan 21 65–74

    Article  ADS  Google Scholar 

  9. Yasuoka, H., Hoshinouchi, S., Nakamura, Y., Matsui, M. and Adachi, K. (1971), Nuclear magnetic resonance of Co in Co-Mn alloys, Phys. Stat. Sol. B46 K81–84

    ADS  Google Scholar 

  10. Niculescu, V., Budnick, J.I., Hines, W.A., Raj, K., Pickart, S. and Skalski, S. (1979), Relating structural, magnetic moment, and hyperfine field behavior to a local environment model in Fe3-xCoxSi alloys, Phys. Rev. B19 452–464

    ADS  Google Scholar 

  11. Panissod, P. Durand, J. and Budnick, J.I. (1982), Hyperfine fields in metallic glasses Nuclear Instruments and Methods 199 99–114

    Google Scholar 

  12. Panissod, P., Wójcik, M., Jedryka, E. (1990), Domain wall NMR in anisotropic ferromagnets in Long, G., GrandJean, F. (eds.) Supermagnets, Hard magnetic materials, Kluwer Academic, NATO ASI Series C 331 pp. 315–354

    Google Scholar 

  13. Bltigel, S., Akai, H., Zeller, R. and Dederichs, P.H. (1987), Hyperfine field of 3d and 4d impurities in Nickel, Phys. Rev. B35 3271–3283

    ADS  Google Scholar 

  14. Drittler, B., Ebert, H., Zeller, R. and Dederichs, P.H. (1989), Ab initio calculation of satellite data for 3d impurities in Cu, Phys. Rev. B39 6334–6341

    ADS  Google Scholar 

  15. Drittler, B., Stefanou, N., Bliigel, S., Zeller, R. and Dederichs, P.H. (1989), Electronic structure and magnetic properties of dilute Fe alloys with transition metal impurities, Phys. Rev. B40 8203–8212

    ADS  Google Scholar 

  16. Ebert, H., Winnert, H., Johnson, D.D. and Pinski, F.J. (1990), A theoretical study of the hyperfine field in bcc FeXCr1-X and FeX Co1-X alloys, J. Phys. Cond. Matter 2 443–453

    Article  ADS  Google Scholar 

  17. Akai, H., Akai, M., Bltigel, S., Drittler, B., Ebert, H., Terakura, K., Zeller, R. and Dederichs, P.H. (1990), Theory of hyperfine interactions in metals, Progress in Theor. Phys. Supp1.101 11–77

    Article  ADS  Google Scholar 

  18. Dederichs, P. H., Zeller, R., Akai, H. and Ebert, H. (1991), Ab initio calculation of the electronic structure of impurities and alloys of ferromagnetic transition metals, J. Magn. Magn. Mater. 100 241–260

    Article  ADS  Google Scholar 

  19. Fukushima, E. and Roeder, S.B.W. (1981) Experimental Pulse NMR. A Nuts and Bolts Approach, Addison-Wesley, Massachusetts

    Google Scholar 

  20. Turov, E. A. and Petrov, M. P. (1972) Nuclear Magnetic Resonance in Ferro and Antiferromagnets, John Wiley & Sons Inc., New York

    Google Scholar 

  21. Zalesskij, A.V., Zeludhev, I.S. (1976) Application of the NMR technique to studies of the domain structure of ferromagnets, Atomic Energy Review 14, 133–172

    Google Scholar 

  22. McCausland, M.A.H., Mackenzie, I.S. (1979) Nuclear magnetic resonance in rare earth metals, Advances in physics 28, 305–456

    Article  ADS  Google Scholar 

  23. Takanashi, K., Yasuoka, H., Kawaguchi, K., Hosoito, N. and Shinjo, T. (1982), Observation of 51V NMR in multilayered Fe-V films with artificial structure, J. Phys. Soc. Japan 51, 3743–3744 and (1984), Microscopic magnetic properties of Fe-V metallic superlattices investigated from 51V NMR, J. Phys. Soc. Japan 53, 4315–4321

    Google Scholar 

  24. Hamada, N., Terakura, K., Takanashi, K. and Yasuoka, H. (1985), Analysis of the atomic configuration near the interface in vacuum deposited Fe-V system, J. Phys. F15 835–850

    Article  ADS  Google Scholar 

  25. Le Dang, K., Veillet, P., Chappert, C., Beauvillain, P. and Renard, D. (1986), NMR studies of a thin cobalt film on a gold substrate, J. Phys. F16 L109–112

    Article  Google Scholar 

  26. Le Dang, K., Veillet, P., Beauvillain, P., Nakayama, N. and Shinjo, T. (1989), Nuclear magnetic resonance study of MnSb multilayered films, J. Phys. Cond. Matter 1, 6153–6158

    Article  ADS  Google Scholar 

  27. Le Dang, K., Veillet, P., Hui He, H., Lamelas, F.J., Lee, C.H. and Clarke, R. (1990), NMR study of interface structure in epitaxial Co-Cu superlattices, Phys. Rev. B41 12902–12904

    ADS  Google Scholar 

  28. Le Dang, K., Veillet, P., Beauvillain, P., Chappert, C., Hui He, H., Lamelas, F. J., Lee, C. H. and Clarke, R., (1991), NMR and magnetization studies of Co/Cu superlatices, Phys. Rev. B43 13228–13231

    ADS  Google Scholar 

  29. Yoshida, K., Takayama, T. and Yasuoka, H. (1991), Nuclear magnetic resonance study of Co-CoO film for perpendicular magnetic recording, J. AppL Phys. 69 5184–5188

    Article  ADS  Google Scholar 

  30. de Gronckel, H.A.M., Kopinga, K., de Jonge, W.J.M, Panissod, P., Schillé, J.P. and den Broeder, F.J.A., (1991), Nanostructure of Co/Cu multilayers, Phys. Rev. B44 9100–9103

    ADS  Google Scholar 

  31. de Gronckel, H.A.M., Mertens, B.M., Bloemen, P.J.H., Kopinga, K. and de Jonge, W.J.M. (1992), Interfaces and strain in multilayers probed by NMR, J. Magn. Magn. Mater. 104–107 1809–1810

    Article  Google Scholar 

  32. Suzuki, Y., Katayama, T. and Yasuoka, H. (1992), NMR study of fcc Co/Cu (100) and (111) artificial superlattices, J. Magn. Magn. Mater. 104–107 1843–1844

    Article  Google Scholar 

  33. Renard, J.P., Beauvillain, P., Le Dang, K., Veillet, P., Velu, E., Marlière, C. and Renard, D. (1992), Large magnetoresistance effect in UHV grown fcc (111) Co/Cu multilayers, J. Magn. Magn. Mater. 115 L147–151

    Article  ADS  Google Scholar 

  34. Mény, C., Panissod, P. and Loloee, R. (1992), Structural study of cobalt-copper multilayers by NMR, Phys. Rev. B45 12269–12277

    ADS  Google Scholar 

  35. Panissod, P. and Mélly, C. (1993), NMR investigation of the nanostructure of…/Cu/Co/Cu/… layers, J. Magn. Magn. Mater. 126 16–18

    Article  ADS  Google Scholar 

  36. Valet, T., Galtier, P., Jacquet, J.C., Melly, C. and Panissod, P. (1993), Correlation between giant magnetoresistance and the microstructure of [Ni80Fe20/Cu/Co] multilayers, J. Magn. Magn. Mater. 121 402–405

    Article  ADS  Google Scholar 

  37. Mény, C., Panissod, P., Humbert, P., Nozieres, J.P., Speriosu, V.S., Gurney, B.A. and Zehringer R., (1993), Structural study of Cu/Co/NiFe/FeMn spin valves by nuclear magnetic resonance, J. Magn. Magn. Mater. 121 406–409

    Article  Google Scholar 

  38. Mény, C., Jay J.P., Panissod P., Humbert P., Speriosu V.S., Lefakis H., Nozières J.P. and Gurney B.A., (1993), Annealed Cu/Co/Cu/NiFe/FeMn spin valves: nanostructure and magnetism Mat. Res. Soc. Symp. Proc. 313 289–294

    Article  Google Scholar 

  39. Saito, Y., Inomata, K., Goto, A. and Yasuoka, H., (1993), Correlation between the magnetoresistance ratio and the interface structure and local strain of Co/Cu superlattices investigated by 59Co NMR, J. Phys. Soc. Jap. 62 1450–1454

    Article  ADS  Google Scholar 

  40. van Alphen, E.A.M., de Gronckel, H.A.M., Bloemen, P.J.H., van Steenbergen, A.S. and de Jonge, W.J.M. (1993), Structural dependence of the magnetic anisotropy of Co films, J. Magn. Magn. Mater. 121 77–79

    Article  ADS  Google Scholar 

  41. Le Dang, K., Veillet, P., Velu, E., Parkin, S.S.P. and Chappert, C. (1993), Influence of crystal structure on the magnetoresistance of Co/Cu multilayers, AppL Phys. Lett. 63 108–110

    Article  ADS  Google Scholar 

  42. Le Dang, K., Veillet, P., Chappert, C., Farrow, R.F.C, Marks, R.F. and Weller, D. (1993), NMR and magnetization studies of orthorhombic distortion in a (110) oriented Co/Pt superlattice, Phys. Rev. B48 14023–14026

    ADS  Google Scholar 

  43. Lord, J.S., Kubo, H., Riedi, P.C. and Walker, M.J. (1993), Nuclear magnetic resonance of molecular beam epitaxially grown Co-Cu superlattices that exhibit large magnetoresistance, J. AppL Phys. 73 6381–6383

    Article  ADS  Google Scholar 

  44. Henry, Y., Mény, C., Dinia, A. and Panissod, P. (1993), Structural and magnetic properties of semiepitaxial Co/Cr multilayers, Phys. Rev. B47 15037–15045

    ADS  Google Scholar 

  45. van Alphen, E.A.M., de Velthuis, S.G.E., de Gronckel, H.A.M., Kopinga, K. and de Jonge, W.J.M (1994) NMR study of the strain in Co-based multilayers, Phys. Rev. B49 17336–17341

    ADS  Google Scholar 

  46. van Alphen, E.A.M., van der Heijden, P.A.A and de Jonge, W.J.M. (1994), Structural and magnetic properties of Co/Ag multilayers, J. App. Phys. 76 6607–6609 and (1995), Influence of the annealing on the structural and magnetic properties of Co/Ag multilayers with thin Co layers, J. Magn. Magn. Mater. 140–144 609–610

    Google Scholar 

  47. van Alphen, E.A.M. and de Jonge, W.J.M. (1995), Granular Co/Ag multilayers: relation between nanostructure and magnetic and transport properties, Phys. Rev. B51 8182–8192

    ADS  Google Scholar 

  48. Thomson, T., Riedi, P.C., Morawe, C. and Zabel, H. (1996), Co NMR investigation of sputtered Co/Cu (100) and (111) multilayers, J. Magn. Magn. Mater. 156 89–90

    Article  ADS  Google Scholar 

  49. Jedryka, E., Wojcik, M., Nadolski, S., Kubinski, D., Holloway, H. (1997), Structural study by NMR in Co/Cu multilayers at second antiferromagnetic maximum, J. Magn. Magn. Mater. 165 292–296

    Article  ADS  Google Scholar 

  50. Portis, A.M. and Gossard, A.C. (1960), Nuclear resonance in ferromagnetic cobalt, J. Appl. Phys. 31 205S–231S

    Article  ADS  Google Scholar 

  51. Kawakami, M., Hihara, T., Koi, Y. and Wakiyama, T. (1972), The 59Co nuclear magnetic resonance in hexagonal cobalt, J. Phys. Soc. Japan 33 1591–1598

    Article  ADS  Google Scholar 

  52. Fekete, D., Boasson, H., Grayevskey, A., Zevin, V. and Kaplan, N. (1978), Anisotropic hyperfine interaction in ferromagnetic hcp Co, Phys. Rev. B17 347–354

    ADS  Google Scholar 

  53. Toth, L. E. and Ravitz, S. F. (1963), Ferromagnetic nuclear resonance in cobalt nuclei in stacking faults and twins, J. Phys. Chem. Solids 24 1203–1206

    Article  ADS  Google Scholar 

  54. Street, R., Rodbell, D.S. and Roth, W.L. (1961), Nuclear magnetic resonance spectrum of 59Co in metallic cobalt powders, Phys. Rev. 121 84–86

    Article  ADS  Google Scholar 

  55. Laforce, R.C., Ravitz, R.F. and Day, G.F. (1961), Effect of dilute solid solution of iron and nickel on the nuclear resonance of 59Co, Phys. Rev. Lett 6 226–228

    Article  ADS  Google Scholar 

  56. Brömer, H. and Huber, H. L. (1978), Nuclear magnetic resonance in ferromagnetic hcp and fcc Co, IMagn. Magn. Mater. 8 61–64

    Article  ADS  Google Scholar 

  57. Riedi, P.C., Dumelow, T., Rubinstein, M., Prinz, G.A. and Qadri, S.B. (1987), Hyperfine field spectrum of epitaxially grown bcc Co, Phys. Rev. B36 4595–4599

    ADS  Google Scholar 

  58. Houdy, P., Boher, P., Giron, F., Pierre, F., Chappert, C., Beauvillain, P., Le Dang, K., Veillet, P. and Velu, E. (1991), Magnetic and structural properties of RF sputtered Co/Fe and Co/Cr multilayers, J.Appl. Phys. 69 5667–5669

    Article  ADS  Google Scholar 

  59. Boher, P., Giron, F., Houdy, P., Baudelet, F., Fontaine, A., Ladouceur, J.M., Dartyge, E., Beauvillain, P., Chappert, C., Veillet, P. and Le Dang, K. (1992), Direct experimental evidence of body centered cubic Co phase in radio frequency sputtered Co/Fe multilayers, J. Appl. Phys. 71 1798–1801

    Article  ADS  Google Scholar 

  60. Dekoster, J., Jedryka, E., Mélly, C. and Langouche, G. (1993), Epilayer induced structural transition to bcc Co during epitaxial growth of Co/Fe superlattices, Europhys. Lett. 22 433–438

    Article  ADS  Google Scholar 

  61. Jay, J. P., Jedryka, E., Wójcik, M., Dekoster, J., Langouche, G. and Panissod, P. (1996), On the stability of bcc Co in Co/Fe superlattices: an NMR and XRD study, Z. Phys. B101 329–337

    Article  ADS  Google Scholar 

  62. Wójcik, M., Jay, J. P., Panissod, P., Jedryka, E., Dekoster, J., Langouche, G. (1997), New phases and short range order in co-deposited CoFe thin film with bcc structure: an NMR study, Z. Phys. B103 5–12

    Article  ADS  Google Scholar 

  63. Jauak, J.F. (1979), Calculated hyperfine field and their pressure derivative in Fe, Co and Ni, Phys. Rev. B20 2206–2208

    ADS  Google Scholar 

  64. Riedi, P.C. and Scurlock, R.G. (1968), Satellite lines in the 59Co resonancein cobalt-nickel alloys, J. Appl. Phys. 39 1241–1242

    Article  ADS  Google Scholar 

  65. Kawakami, M. (1976), 59Co NMR in hexagonal cobalt base dilute alloys with 3d transition metals, J. Phys. Soc. Japan 40 56–62

    Article  ADS  Google Scholar 

  66. Shavishvili, T.M. and Kiliptari, I.G. (1979), Distribution of hyperfine field and magnetic perturbation in cobalt alloys with 3d transition metals, Phys. Stat. Sol. B92 39–47

    ADS  Google Scholar 

  67. Mélly, C., Jedryka, E. and Panissod, P. (1993), Satellite structure of Co NMR spectra in some Co alloys, J. Phys. Cond. Matter 5 1547–1556

    Article  ADS  Google Scholar 

  68. Jay, J. P., Wüjcik, M. and Panissod, P. (1996), Hyperfine field and ordering in bcc CoFe bulk alloys studied by “Co NMR and Monte-Carlo simulation, Z. Phys. B101 471–486

    Article  ADS  Google Scholar 

  69. de Gronckel, H.A.M., Bloemen, P.J.H., van Alphen, E.A.M. and de Jonge, W.J.M. (1994), Structure and local magnetic anisotropy of MBE grown Co films, Phys.Rev. B49 11327–11335

    ADS  Google Scholar 

  70. Le Fèvre, J., Chandesris, D., Magnan, H. and Heckmann, O. (1994), Structure of thin cobalt film on copper studied by EXAFS and analyzed with the FEFF code, J. de Phys. (Paris) C9–4 159–162

    Google Scholar 

  71. Bruno, P. and Renard, J.P. (1989), Magnetic surface anisotropy of transition metal ultrathin films, Appl. Phys. A49 499–506

    ADS  Google Scholar 

  72. van der Merwe, J.H. and Jesser, W.A. (1988), An exactly solvable model for calculating critical misfit and thickness in epitaxial superlattices, J. Appl. Phys. 63, 1509–1517 and 1928–1935

    Article  ADS  Google Scholar 

  73. Daalderop, G.H.O., Kelly, P.J. and den Broeder, F.J.A. (1992), Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers, Phys. Rev. Lett. 68 682–685

    Article  ADS  Google Scholar 

  74. van Alphen, E.A.M. (1995), Nuclear magnetic resonance studies of cobalt based multilayers, Ph. D. Thesis, Technical University Eindhoven

    Google Scholar 

  75. Stoeffler, D., (1997), Calculation of electronic and magnetic structure in ultra-thin magnetic systems, J.Magn. Magn. Mater. 165 62–69

    Article  ADS  Google Scholar 

  76. Slonczewski, J.C. (1993), Origin of biquadratic exchange in magnetic multilayers, J. Appl. Phys. 73, 5957–5962

    Article  ADS  Google Scholar 

  77. Dinia, A. and Ounadjela, K. (1995), Temperature dependence of the magnetoresistance in Co/Ru sandwiche and superlattice structures, J. Magn. Magn. Mater. 146 66–76

    Article  ADS  Google Scholar 

  78. Thomson T., Kubo H., Lord J.S. and Riedi P.C., Walker M.J. (1994), Field dependence of nuclear magnetic resonance in molecular beam epitaxy grown Co(111)/Cu multilayers, J. Appl. Phys. 76 6504–6506

    Article  ADS  Google Scholar 

  79. Kubinski D. and Holloway H. J. (1996), Giant magnetoresistance in Co/Cu multilayers with very thin Co layers: reduced hysteresis at the second antiferromagnetic maximum, J. Appl. Phys. 79 1661–1663

    Article  ADS  Google Scholar 

  80. Parkin, S.S.P., More, N. and Roche, K.P. (1990), Oscillations of exchange coupling and magneto-resistance in metallic superlattice systems Co/Ru, Co/Cr and Fe/Cr, Phys. Rev. Lett. 64 2304–2307

    Article  ADS  Google Scholar 

  81. Arbaoui, A., Dinia, A. and Panissod, P. (1993), Oscillatory magnetoresistance of Co/Ru superlattices, Solid State Comm. 85 475–477

    Article  ADS  Google Scholar 

  82. Riihrig, M., Schafer, R., Hubert, A., Mosier, R., Wolf, J.A., Demokritov, S. and Grunberg, P. (1991), Domain observations on Fe/Cr/Fe layered structure: evidence for biquadratic coupling, Phys.Stat. Sol Al25 635

    Article  ADS  Google Scholar 

  83. Slonczewski, J.C. (1991), Fluctuation mechanism for biquadratic exchange coupling in magnetic multilayers, Phys. Rev. Lett. 67 3172–3175 and (1995), Overview of interlayer exchange theory, J. Magn. Magn. Mater. 150 13–24

    Google Scholar 

  84. Marrows C., Hickey B. and Greig D., IEEE TransMag, Proc. of InterMag 97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Panissod, P. (1998). Structural and Magnetic Investigations of Ferromagnets by NMR. Application to Magnetic Metallic Multilayers. In: Bar’yakthar, V.G., Wigen, P.E., Lesnik, N.A. (eds) Frontiers in Magnetism of Reduced Dimension Systems. NATO ASI Series, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5004-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5004-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6101-8

  • Online ISBN: 978-94-011-5004-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics