Skip to main content

Nanostructured Materials Produced by High-Energy Mechanical Milling and Electrodeposition

  • Chapter
Nanostructured Materials

Part of the book series: NATO ASI Series ((ASHT,volume 50))

Abstract

The field of nanostructured materials has gained worldwide prominence in recent years as an area with great potential for new technological advances. As the field develops, the need for large quantities of materials with complex nanostructures will become more and more pronounced. Probably one of the most efficient synthesis techniques for obtaining large quantities of these materials is high-energy mechanical milling. One of the goals of this paper is to review some of the concepts related to nanostructure design and processing using the milling process. Some physical considerations will be presented as examples of various nanostructured systems are discussed. The examples will also serve as a basis for examining some technological applications based on mechanically processed nanostructured materials.

If mechanical milling is considered as the method of choice for producing large quantities of nanostructured powders, electrodeposition is probably the most efficient synthesis technique to obtain dense, nanostructured end products for a variety of applications. Recent advances in controlling particle nucleation and growth during electrodeposition have resulted in a renewed interest in this processing method. Because of its enormous potential, the second part of the paper is devoted to recent advances in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weeber A.W. and Bakker H. (1988) “Amorphization by ball milling A review”, Physica B 153, 93–135.

    Article  CAS  Google Scholar 

  2. Koch C.C. (1997) “ Synthesis of nanostructured by mechanical milling: problems and opportunities”, Nano Struc. Mater. 9, 13–22

    Article  CAS  Google Scholar 

  3. Fecht H.J. (1994) “Nanophase materials by mechanical attrition: synthesis and characterization” NATO ASI series E–Vol 260, ed: G.C. Hadjipanayis and R.W. Siegel, 125–144.

    Google Scholar 

  4. Koch C.C. (1991) “Mechanical milling and alloying”, Materials Sci. & Tech, Vol. 15, ed: R.W. Cahn, VCH.

    Google Scholar 

  5. Lowenheim F.A. (1974) “Modern Electroplating” 3rd ed., Wiley & Sons, New-York.

    Google Scholar 

  6. Durney L.J. (1984) “Electroplating Engineering Handbook”, Fourth Ed., VNR, New York.

    Google Scholar 

  7. Dini J.W. (1993), “Electrodeposition, The Materials Science of Coatings and Substrates”, Noyes Publication.

    Google Scholar 

  8. Benjamin J.S., Sci. Amer. 234, 40 (1976).

    Article  CAS  Google Scholar 

  9. Siegel R.W. and Thomas G J (1992) “Grain boundaries in nanophase materials”, Ultramiscroscopy 40, 376–384.

    Article  Google Scholar 

  10. Huot J.Y., Trudeau M.L. and Schulz R. (1991) “Low hydrogen overpotential nanocrystalline Ni-Mo cathodes for alkaline water electrolysis”, J. Electrochem. Soc. 138, 1316–1321.

    Article  CAS  Google Scholar 

  11. Suryanarayana C., Chen G.-H., Frefer A. and Froes F.H. (1992) “Structural evolution of mechanically alloyed Ti-Al alloys”, Mater. Sci. & Eng. A158, 93–101.

    Article  CAS  Google Scholar 

  12. Oehring M., Klassen T. and Bormann R. (1993) “The formation of metastable Ti-Al solid solutions by mechanical alloying and ball milling”, J. Mater. Res. 8, 2819–2829.

    Article  CAS  Google Scholar 

  13. Ma E., Atzmon M. and Pinkerton F.E. (1993) “Thermodynamic and magnetic properties of metastable FexCu100-x solid solutions formed by mechanical alloying”, J. Appl. Phys. 74, 955–962.

    Article  CAS  Google Scholar 

  14. Gente C., Oehring M. and Bormann R. (1993) “Formation of thermodynamically unstable solid solutions in the Cu-Co system by mechanical alloying”, Phys. Rev. B 48, 13244–13252.

    Article  CAS  Google Scholar 

  15. Trudeau M.L., Huot J.Y and Schulz R. (1991) “Mechanically alloyed nanocrystalline Ni-Mo powders: a new technique for producing active electrodes for catalysis”, Appl. Phys. Lett. 58, 2764, (1991).

    Article  CAS  Google Scholar 

  16. Klug H.P. and Alexander L.E. (1974) “X-ray Diffraction Procedures for Polycrystalline and Anorphous Materials”, 2nd ed., Wiley & Sons, New York, pp. 618–686.

    Google Scholar 

  17. Zhangm K., Alexandrov I.V., Valiev R.Z., and Lu K. (1996) “Structural characterization of nanocrystalline copper by means of x-ray diffraction”, J. Appl. Phys. 80, 5617–5624.

    Article  Google Scholar 

  18. Young R.A. (1993), “The Rietveld Method”, IUCr Monographs on Crystallography Vol. 5, Oxford Science Pub..

    Google Scholar 

  19. Bokhimi, Morales A., Lucatero M.A. and Ramirez R. (1997) “Rietveld refinement of nanocrystalline phases”, NanoStruc. Mater. 9, 315–318.

    Article  CAS  Google Scholar 

  20. Krill C.E. and Birringer R. (1997) “Estimating grain-size distribution in nanocrystalline materials from x-ray diffraction profile analysis”, Phil. Mag. A, in press

    Google Scholar 

  21. Schulz R., Huot J.Y., Trudeau M.L., Dignard-Bailey L., Yan Z.H., Jin S., Lamarre A., Ghali E. and Van Neste A. (1994) “Nanocrystalline Ni-Mo Alloys and their Application in Electrolysis”, J. Mater. Res. 9, 2998–3008.

    Article  CAS  Google Scholar 

  22. Hellstem E., Fecht H.J., Garland C. and Johnson W.L. (1989) “”, J Appl. Phys. 65, 305-

    Article  Google Scholar 

  23. Oleszak D. and Shingu P.H. (1996) “Nanocrystalline metals prepared by low energy ball milling”, J. Appl. Phys. 79, 2975–2980.

    Article  CAS  Google Scholar 

  24. Eckert J., Holzer J.C., Krill III C.E. and Johnson W.L. (1993) “Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders”, J. Appl. Phys. 73, 2794–2802.

    Article  CAS  Google Scholar 

  25. Eckert J., Holzer J.C., Krill III C.E. and Johnson W.L. (1992) “Reversible Grain Size Changes in Ball-Milled Nanocrystalline Fe-Cu Alloys”, J. Mater. Res 7, 1980–1983.

    Article  CAS  Google Scholar 

  26. Shen T.D and Koch C.C. (1996) “Formation, solid solution hardening and softening of nanocrystalline solid solutions prepared by mechanical attrition”, Acta Mater. 44, 753–761.

    Article  CAS  Google Scholar 

  27. Xu J., Herr U., Klassen T. and Averback R.S. (1996) “Formation of supersaturated solid solution in the immiscible Ni-Ag system by mechanical alloying”, J. Appl. Phys. 79, 3935–3945.

    Article  CAS  Google Scholar 

  28. Tessier P., Trudeau M.L., Strom-Olsen J.O. and Schulz R. (1993) “Structural transformations and metastable phases produced by mechanical deformations in the Bi-Sr-Ca-Cu-O superconducting system”, J. Mater. Res. 8, 1258–1267.

    Article  CAS  Google Scholar 

  29. Chen Y.L. and Yang A.Z (1993) “Formation of supersaturated solution in ZrO2CeO2 system induced by mechanical alloying”, Scripta Metal. et Mater. 29, 1349–1354.

    Article  CAS  Google Scholar 

  30. Zaluski L., Tessier P., Ryan D.H., Donner C.B., Zaluska A., Strom-Olsen J.O., Trudeau M.L. and Schulz R. (1993), “Amorphous and nanocrystalline Fe-Ti prepared by ball milling”, J. Mater. Res. 8, 3059–3068.

    Article  CAS  Google Scholar 

  31. Bakker H. and Di L.M. (1992) “Atomic disorder and phase transition in intermetallic compounds by high-energy ball milling”, Mater. Sci. For. 88–90, 27–34.

    Google Scholar 

  32. Di L.M., Bakker H., Tamminga Y. and de Boer F.R. (1991) “Mechanical attrition and magnetic properties of CsCI-structure Co-Ga”, Phys. Rev. 44, 2444–2451.

    Article  CAS  Google Scholar 

  33. Bansal C., Gao Z.Q., Hong L.B. and Fultz B. (1994) “Phases and phase stabilities of Fe3X alloys (X=A1, As, Ge, In, Sb, Si, Sn, Zn) prepared by mechanical alloying”, J. Appl. Phys. 76, 5961–5966.

    Article  CAS  Google Scholar 

  34. Zielinski P.A., Schulz R., Kaliaguine S. and Van Neste A. (1993) “Structural transformation of alumina by high-energy ball milling”, J. Mater. Res. 8, 2985–2992.

    Article  CAS  Google Scholar 

  35. Hong L.B. and Fultz B. (1996) “Two-phase coexistence in Fe-Ni alloys synthesized by ball milling”, J. Appl. Phys 79, 3946–3955.

    Article  CAS  Google Scholar 

  36. Maurice D.R. and Courtney T.H. (1990) “The physics of mechanical alloying: a first report”, Metall. Trans. A 21, 289–303.

    Article  Google Scholar 

  37. Yamada K. and Koch C.C. (1993) “The influence of mill energy and temperature on the structure of the TiNi intermetallic after mechanical attrition”, J. Mater. Res. 8, 1317–1326.

    Article  CAS  Google Scholar 

  38. Trudeau M.L., Schulz R., Dussault D. and Van Neste A. (1990) “Structural changes during high-energy ball milling of iron based amorphous alloys: is high-energy ball milling equivalent to a thermal process?”, Phys. Rev. Lett. 64, 99–102.

    Article  CAS  Google Scholar 

  39. Trudeau M.L., Van Neste A. and Schulz R. (1991) “High-resolution electron microscopy study of iron nanocrystals prepared by high-energy mechanical crystallization”, Mat. Res. Soc. Symp. Proc. 206, 487–492.

    Article  CAS  Google Scholar 

  40. Giri A.K., Gonzalez J.M. and Gonzalez J. (1995) “Crystallization by ball milling: a way to produce soft magnetic materials in powdered form”, IEEE Trans. Magne. 31, 3904–3906.

    Article  CAS  Google Scholar 

  41. Fan G.J., Quan M.X. And Hu Z.Q. (1996) “Induced magnetic anisotropy in Fe80B20 metallic glass by mechanical milling”, Appl. Phys. Lett. 68, 1159–1161.

    Article  CAS  Google Scholar 

  42. Trudeau M.L. (1994) “Deformation-induced crystallization due to instability in amorphous FeZr alloys”, Appl. Phys. Lett. 64, 3661–3663.

    Article  CAS  Google Scholar 

  43. Hellstem and Schultz L. (1986) “Glass-forming ability in mechanically alloyed Fe-Zr”, Appl. Phys. Let. 49, 1163–1165

    Article  Google Scholar 

  44. Hellstem E., Schultz L. and Eckert J. (1988) “Glass-forming ranges of mechanically alloyed powders” J. Less-Comm Met. 140, 93–98.

    Article  Google Scholar 

  45. Bansal C., Fultz B. and Johnson W.L. (1994) “Crystallization of Fe-B-Si metallic glass during ball milling”, NanoStruc. Mater. 4, 919–925.

    Article  CAS  Google Scholar 

  46. Miyoshi K. and Buckley D.H. (1984) “Mechanical-contact-induced transformation from the amorphous to the partially crystalline state in metallic glass”, Thin Sol. Films 118, 363–373.

    Article  CAS  Google Scholar 

  47. Chen H., He Y., Shiflet G.J. and Poon S.J. (1994) “Deformation-induced nanocrystal formation in shear bands of amorphous alloys”, Nature 367, 541–543

    Article  CAS  Google Scholar 

  48. He Y., Shiflet G.J. and Poon S.J. (1994) “Ball milling-induced nanocrystal formation in aluminium-based metallic glasses”, Acta Metall. Mater. 43, 83–91.

    Google Scholar 

  49. Csontos A.A. and Shiflet G.J. (1997) “Formation and chemistry of nanocrystalline phases formed during deformation in aluminium-rich metallic glasses”, NanoStruc. Mater. 9, 281–289.

    Article  CAS  Google Scholar 

  50. Fan G.J., Quan M.X. and Hu Z.Q., Li Y.L. and Liang Y. (1996) “On the mechanically driven rapid crystallization of amorphous Si3N4 ceramics”, Appl. Phys. Lett 68, 915–916

    Article  CAS  Google Scholar 

  51. Beke D.L. (1996) “Magnetic properties of nanocrystalline Fe, Ni(Fe) and Fe(Si)”, Mater. Sci. Forum 225–227, 701–706.

    Article  Google Scholar 

  52. Courtney T.H. and Wang Z. (1992) “Grinding media wear during mechanical alloying of Ni-W alloys in a SPEX mill”, Scripta Metal. et Mater. 27, 777–782.

    Article  CAS  Google Scholar 

  53. Yvon P.J. and Schwarz R.B. (1993) “Effects of iron impurities in mechanical alloying using steel media”, J. Mater. Res. 8, 239–241.

    Article  CAS  Google Scholar 

  54. Dussault D., Trudeau M.L., Van Neste A. and Schulz R. (1995) “The influence of Oxygen on the Crystallization Process of Amorphous Powders by Mechanical Deformation”, Advances Powder Particulate Mater. 8, 13–21.

    Google Scholar 

  55. Trudeau M.L., Dignard-Bailey L., Schulz, R., Dussault D. and Van Neste V. (1993) “Fabrication of nanocrystalline iron-based lloys by the mechanical crystallization of amorphous materials”, NanoStruc. Mater. 2, 361–368.

    Article  CAS  Google Scholar 

  56. Faudot F., Gaffet E. and Harmelin M. (1993) “Identification by DSC and DTA of the oxygen and carbon contamination due to the use of ethanol during mechanical alloying of Cu-Fe powders”, J. Mater. Sci. 28, 2669–2676.

    Article  CAS  Google Scholar 

  57. Ivison P.K., Soletta I., Cowlam N., Cocco G., Enzo S. and Battezzati L. (1992) “The effect of absorbed hydrogen on the amorphization of CuTi alloys”, J. Phys: Cond. Matter 4, 5239–5248.

    Article  CAS  Google Scholar 

  58. Zaluski L., Zaluska A., Tessier P., Strôm-Olsen J.O. and Sculz R. (1996) “Nanocrystalline Hydrogen Absorbing Alloys”, Mater. Sci. For. 225–227, 853–858.

    Google Scholar 

  59. Zaluski L., Zaluska A., Tessier P., Ström-Olsen and R. Schulz (1996) “Hydrogen absorption by nanocrystalline and amorphous Fe-Ti with palladium catalyst, produced by ball milling”, J. Mater. Sci. 31, 695–698.

    Article  CAS  Google Scholar 

  60. Trudeau M.L. and Ying J.J. (1996) “Nanocrystalline materials in catalysis and electrocatalysis: structure tailoring and surface reactivity”, NanoStruc. Mater. 7, 245–258.

    Article  CAS  Google Scholar 

  61. Van Neste A., Yip S.H., Jin S., Boily S., Ghali E., Guay D. and Schulz R. (1996) “Low overpotential nanocrystalline Ti-Fe-Ru-O cathodes for the production of sodium chlorate”, Mater. Sci. For. 225–227, 795–800.

    Google Scholar 

  62. Blouin M., Guay D., Boily S., Van Neste A. and Sculz R. (1996) “Electrocatalytic properties of nanocrystalline alloys: effect of the oxygen concentration in Ti2RuFeO, alloy on the structural and electrochemical properties”, Mater. Sci. For. 225–227, 801–806.

    Google Scholar 

  63. Suzuki T. and Nagumo M. (1992) “Mechanochemical reaction of Ti-Al with hydrocarbon during mechanical alloying”, Scripta Metal. et Mater. 27, 1413–1418.

    Article  CAS  Google Scholar 

  64. Ding J., Tsuzuki T., McCormick P.G. and Street. R. (1996) “Ultrafine Cu particles prepared by mechanochemical process”, J. Alloys & Comp. 234, L1 - L3.

    Article  CAS  Google Scholar 

  65. Chen Y., Halstead T. and Williams J.S. (1996) “Influence of milling temperature and atmosphere on the synthesis of iron nitrides by ball milling”, Mater. Sci. & Eng. A206, 24–29.

    Article  Google Scholar 

  66. Ding J., Tsuzuki T., McCormick P.G. and Street R. (1996) “Structure and magnetic properties of ultrafine Fe powders by mechanochemical processing”, J. Magne Magne. Mater. 162, 271–276.

    Article  CAS  Google Scholar 

  67. Zhang H., Kisi E.H. and Myhra S. (1996) “A solid solution pumping mechanism for the nitrogenation of titanium during mechanical deformation in air”, J. Phys. D 29, 1367–1372.

    Article  CAS  Google Scholar 

  68. Pardavi-Horvath M. and Takacs L. (1992) “Iron-alumina nanocomposite prepared b,,i ball-milling”, IEEE trans Magne. 28, 3186–3188.

    Article  CAS  Google Scholar 

  69. Pardavi-Horvath M. and Takacs L. (1993) “Magnetic properties of copper-magnetites nanocomposite prepared by ball milling”, J. Appl. Phys. 73, 6958–6960.

    Article  CAS  Google Scholar 

  70. Matteazzi P. and Le Caër G. (1992) “Synthesis of nanocrystalline alumina-metal composites by room-temperature ball-milling of metal oxides and aluminum”, J. Am. Ceram. Soc. 75, 2749–2755.

    Article  CAS  Google Scholar 

  71. Matteazzi P. and Le Caër G. (1992) “Exchange reaction milling in iron nitrides, fluorides and carbides”, J. All. & Comp. 187, 305–315.

    Article  CAS  Google Scholar 

  72. McCormick P.G., Ding J., Feutrill E.H. and Street R. (1996) “Mechanically alloyed hard magnetic materials”, J. Magne. Magne. Mater. 157/158, 7–10.

    Article  CAS  Google Scholar 

  73. Baumann G., Knothe K. and Fecht H.J. (1997) “Surface modification and nanostructured formation of high speed railway tracks”, NanoStruc. Mater. 9, 751–754.

    Article  CAS  Google Scholar 

  74. G. Baumann G, Y. Thong Y. and Fecht H.-J. (1996) “Comparison between nanophase formation during friction induced surface wear and mechanical attrition of a pearlitic steel”, NanoStruc. Mater. 7, 237–244.

    Article  CAS  Google Scholar 

  75. Schaffer R.M. and Gonser B.W. (1943) “A sulphate-chloride solution for iron electroplating and electroforming”, Trans. Electrochem. Soc. 84, 319–334.

    Article  Google Scholar 

  76. Trudeau M.L., unpublished

    Google Scholar 

  77. Gonzalez F., Brennenstuhl A.M., Palumbo G., Erb U. and Lichtenberger P.C. (1996) “Electrodeposited nanostructured nickel for in-situ nuclear steam generator repair”, Mater. Sci. For. 225–227, 831–836.

    Google Scholar 

  78. Choo R.T.C., Toguri J.M., El-Sherik A.M. and Erb (1995) “Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating”, J. Appl. Electrochem. 25, 384–403.

    Article  CAS  Google Scholar 

  79. Grimmett D.L., Schwartz M. and Nobe K. (1990) “A comparison of DC and pulse Fe-Ni alloy deposits”, J. Electrochem Soc. 140, 973–978.

    Article  Google Scholar 

  80. Clark D., Wood D. and Erb E. (1997) “Industrial applications of electrodeposited nanocrystals”, NanoStruc. Mater. 9, 755–758.

    Article  CAS  Google Scholar 

  81. El-Sherik A.M. and Erb U. (1995) “Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition”, J. Mater. Sci. 30, 5743–5749.

    Article  CAS  Google Scholar 

  82. Erb U., Palumbo G., Szpunar B and Aust K.T. (1997) “Electrodeposited vs. consolidated nanocrystals: difference and similarities”, NanoStruc. Mater. 9, 261–270.

    Article  CAS  Google Scholar 

  83. Erb U. (1995) “Electrodeposited nanocrystals: synthesis, properties and industrial applications”, Nanostruc. Mater. 6, 533–538.

    Article  Google Scholar 

  84. Bryden K.J. and Ying J.Y. (1997) “Electrodeposition synthesis and hydrogen absorption properties of nanostructured palladium-iron alloys”, NanoStruc. Mater. 9, 485–488.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Trudeau, M.L. (1998). Nanostructured Materials Produced by High-Energy Mechanical Milling and Electrodeposition. In: Chow, GM., Noskova, N.I. (eds) Nanostructured Materials. NATO ASI Series, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5002-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5002-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6100-1

  • Online ISBN: 978-94-011-5002-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics