Nanostructured Materials Produced by High-Energy Mechanical Milling and Electrodeposition

  • Michel L. Trudeau
Part of the NATO ASI Series book series (ASHT, volume 50)


The field of nanostructured materials has gained worldwide prominence in recent years as an area with great potential for new technological advances. As the field develops, the need for large quantities of materials with complex nanostructures will become more and more pronounced. Probably one of the most efficient synthesis techniques for obtaining large quantities of these materials is high-energy mechanical milling. One of the goals of this paper is to review some of the concepts related to nanostructure design and processing using the milling process. Some physical considerations will be presented as examples of various nanostructured systems are discussed. The examples will also serve as a basis for examining some technological applications based on mechanically processed nanostructured materials.

If mechanical milling is considered as the method of choice for producing large quantities of nanostructured powders, electrodeposition is probably the most efficient synthesis technique to obtain dense, nanostructured end products for a variety of applications. Recent advances in controlling particle nucleation and growth during electrodeposition have resulted in a renewed interest in this processing method. Because of its enormous potential, the second part of the paper is devoted to recent advances in this area.


Shear Band Metallic Glass Mechanical Alloy Amorphous Alloy Nanostructured Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weeber A.W. and Bakker H. (1988) “Amorphization by ball milling A review”, Physica B 153, 93–135.CrossRefGoogle Scholar
  2. 2.
    Koch C.C. (1997) “ Synthesis of nanostructured by mechanical milling: problems and opportunities”, Nano Struc. Mater. 9, 13–22CrossRefGoogle Scholar
  3. 3.
    Fecht H.J. (1994) “Nanophase materials by mechanical attrition: synthesis and characterization” NATO ASI series E–Vol 260, ed: G.C. Hadjipanayis and R.W. Siegel, 125–144.Google Scholar
  4. 4.
    Koch C.C. (1991) “Mechanical milling and alloying”, Materials Sci. & Tech, Vol. 15, ed: R.W. Cahn, VCH.Google Scholar
  5. 5.
    Lowenheim F.A. (1974) “Modern Electroplating” 3rd ed., Wiley & Sons, New-York.Google Scholar
  6. 6.
    Durney L.J. (1984) “Electroplating Engineering Handbook”, Fourth Ed., VNR, New York.Google Scholar
  7. 7.
    Dini J.W. (1993), “Electrodeposition, The Materials Science of Coatings and Substrates”, Noyes Publication.Google Scholar
  8. 8.
    Benjamin J.S., Sci. Amer. 234, 40 (1976).CrossRefGoogle Scholar
  9. 9.
    Siegel R.W. and Thomas G J (1992) “Grain boundaries in nanophase materials”, Ultramiscroscopy 40, 376–384.CrossRefGoogle Scholar
  10. 10.
    Huot J.Y., Trudeau M.L. and Schulz R. (1991) “Low hydrogen overpotential nanocrystalline Ni-Mo cathodes for alkaline water electrolysis”, J. Electrochem. Soc. 138, 1316–1321.CrossRefGoogle Scholar
  11. 11.
    Suryanarayana C., Chen G.-H., Frefer A. and Froes F.H. (1992) “Structural evolution of mechanically alloyed Ti-Al alloys”, Mater. Sci. & Eng. A158, 93–101.CrossRefGoogle Scholar
  12. 12.
    Oehring M., Klassen T. and Bormann R. (1993) “The formation of metastable Ti-Al solid solutions by mechanical alloying and ball milling”, J. Mater. Res. 8, 2819–2829.CrossRefGoogle Scholar
  13. 13.
    Ma E., Atzmon M. and Pinkerton F.E. (1993) “Thermodynamic and magnetic properties of metastable FexCu100-x solid solutions formed by mechanical alloying”, J. Appl. Phys. 74, 955–962.CrossRefGoogle Scholar
  14. 14.
    Gente C., Oehring M. and Bormann R. (1993) “Formation of thermodynamically unstable solid solutions in the Cu-Co system by mechanical alloying”, Phys. Rev. B 48, 13244–13252.CrossRefGoogle Scholar
  15. 15.
    Trudeau M.L., Huot J.Y and Schulz R. (1991) “Mechanically alloyed nanocrystalline Ni-Mo powders: a new technique for producing active electrodes for catalysis”, Appl. Phys. Lett. 58, 2764, (1991).CrossRefGoogle Scholar
  16. 16.
    Klug H.P. and Alexander L.E. (1974) “X-ray Diffraction Procedures for Polycrystalline and Anorphous Materials”, 2nd ed., Wiley & Sons, New York, pp. 618–686.Google Scholar
  17. 17.
    Zhangm K., Alexandrov I.V., Valiev R.Z., and Lu K. (1996) “Structural characterization of nanocrystalline copper by means of x-ray diffraction”, J. Appl. Phys. 80, 5617–5624.CrossRefGoogle Scholar
  18. 18.
    Young R.A. (1993), “The Rietveld Method”, IUCr Monographs on Crystallography Vol. 5, Oxford Science Pub..Google Scholar
  19. 19.
    Bokhimi, Morales A., Lucatero M.A. and Ramirez R. (1997) “Rietveld refinement of nanocrystalline phases”, NanoStruc. Mater. 9, 315–318.CrossRefGoogle Scholar
  20. 20.
    Krill C.E. and Birringer R. (1997) “Estimating grain-size distribution in nanocrystalline materials from x-ray diffraction profile analysis”, Phil. Mag. A, in pressGoogle Scholar
  21. 21.
    Schulz R., Huot J.Y., Trudeau M.L., Dignard-Bailey L., Yan Z.H., Jin S., Lamarre A., Ghali E. and Van Neste A. (1994) “Nanocrystalline Ni-Mo Alloys and their Application in Electrolysis”, J. Mater. Res. 9, 2998–3008.CrossRefGoogle Scholar
  22. 22.
    Hellstem E., Fecht H.J., Garland C. and Johnson W.L. (1989) “”, J Appl. Phys. 65, 305-CrossRefGoogle Scholar
  23. 23.
    Oleszak D. and Shingu P.H. (1996) “Nanocrystalline metals prepared by low energy ball milling”, J. Appl. Phys. 79, 2975–2980.CrossRefGoogle Scholar
  24. 24.
    Eckert J., Holzer J.C., Krill III C.E. and Johnson W.L. (1993) “Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders”, J. Appl. Phys. 73, 2794–2802.CrossRefGoogle Scholar
  25. 25.
    Eckert J., Holzer J.C., Krill III C.E. and Johnson W.L. (1992) “Reversible Grain Size Changes in Ball-Milled Nanocrystalline Fe-Cu Alloys”, J. Mater. Res 7, 1980–1983.CrossRefGoogle Scholar
  26. 26.
    Shen T.D and Koch C.C. (1996) “Formation, solid solution hardening and softening of nanocrystalline solid solutions prepared by mechanical attrition”, Acta Mater. 44, 753–761.CrossRefGoogle Scholar
  27. 27.
    Xu J., Herr U., Klassen T. and Averback R.S. (1996) “Formation of supersaturated solid solution in the immiscible Ni-Ag system by mechanical alloying”, J. Appl. Phys. 79, 3935–3945.CrossRefGoogle Scholar
  28. 28.
    Tessier P., Trudeau M.L., Strom-Olsen J.O. and Schulz R. (1993) “Structural transformations and metastable phases produced by mechanical deformations in the Bi-Sr-Ca-Cu-O superconducting system”, J. Mater. Res. 8, 1258–1267.CrossRefGoogle Scholar
  29. 29.
    Chen Y.L. and Yang A.Z (1993) “Formation of supersaturated solution in ZrO2CeO2 system induced by mechanical alloying”, Scripta Metal. et Mater. 29, 1349–1354.CrossRefGoogle Scholar
  30. 30.
    Zaluski L., Tessier P., Ryan D.H., Donner C.B., Zaluska A., Strom-Olsen J.O., Trudeau M.L. and Schulz R. (1993), “Amorphous and nanocrystalline Fe-Ti prepared by ball milling”, J. Mater. Res. 8, 3059–3068.CrossRefGoogle Scholar
  31. 31.
    Bakker H. and Di L.M. (1992) “Atomic disorder and phase transition in intermetallic compounds by high-energy ball milling”, Mater. Sci. For. 88–90, 27–34.Google Scholar
  32. 32.
    Di L.M., Bakker H., Tamminga Y. and de Boer F.R. (1991) “Mechanical attrition and magnetic properties of CsCI-structure Co-Ga”, Phys. Rev. 44, 2444–2451.CrossRefGoogle Scholar
  33. 33.
    Bansal C., Gao Z.Q., Hong L.B. and Fultz B. (1994) “Phases and phase stabilities of Fe3X alloys (X=A1, As, Ge, In, Sb, Si, Sn, Zn) prepared by mechanical alloying”, J. Appl. Phys. 76, 5961–5966.CrossRefGoogle Scholar
  34. 34.
    Zielinski P.A., Schulz R., Kaliaguine S. and Van Neste A. (1993) “Structural transformation of alumina by high-energy ball milling”, J. Mater. Res. 8, 2985–2992.CrossRefGoogle Scholar
  35. 35.
    Hong L.B. and Fultz B. (1996) “Two-phase coexistence in Fe-Ni alloys synthesized by ball milling”, J. Appl. Phys 79, 3946–3955.CrossRefGoogle Scholar
  36. 36.
    Maurice D.R. and Courtney T.H. (1990) “The physics of mechanical alloying: a first report”, Metall. Trans. A 21, 289–303.CrossRefGoogle Scholar
  37. 37.
    Yamada K. and Koch C.C. (1993) “The influence of mill energy and temperature on the structure of the TiNi intermetallic after mechanical attrition”, J. Mater. Res. 8, 1317–1326.CrossRefGoogle Scholar
  38. 38.
    Trudeau M.L., Schulz R., Dussault D. and Van Neste A. (1990) “Structural changes during high-energy ball milling of iron based amorphous alloys: is high-energy ball milling equivalent to a thermal process?”, Phys. Rev. Lett. 64, 99–102.CrossRefGoogle Scholar
  39. 39.
    Trudeau M.L., Van Neste A. and Schulz R. (1991) “High-resolution electron microscopy study of iron nanocrystals prepared by high-energy mechanical crystallization”, Mat. Res. Soc. Symp. Proc. 206, 487–492.CrossRefGoogle Scholar
  40. 40.
    Giri A.K., Gonzalez J.M. and Gonzalez J. (1995) “Crystallization by ball milling: a way to produce soft magnetic materials in powdered form”, IEEE Trans. Magne. 31, 3904–3906.CrossRefGoogle Scholar
  41. 41.
    Fan G.J., Quan M.X. And Hu Z.Q. (1996) “Induced magnetic anisotropy in Fe80B20 metallic glass by mechanical milling”, Appl. Phys. Lett. 68, 1159–1161.CrossRefGoogle Scholar
  42. 42.
    Trudeau M.L. (1994) “Deformation-induced crystallization due to instability in amorphous FeZr alloys”, Appl. Phys. Lett. 64, 3661–3663.CrossRefGoogle Scholar
  43. 43.
    Hellstem and Schultz L. (1986) “Glass-forming ability in mechanically alloyed Fe-Zr”, Appl. Phys. Let. 49, 1163–1165CrossRefGoogle Scholar
  44. 44.
    Hellstem E., Schultz L. and Eckert J. (1988) “Glass-forming ranges of mechanically alloyed powders” J. Less-Comm Met. 140, 93–98.CrossRefGoogle Scholar
  45. 45.
    Bansal C., Fultz B. and Johnson W.L. (1994) “Crystallization of Fe-B-Si metallic glass during ball milling”, NanoStruc. Mater. 4, 919–925.CrossRefGoogle Scholar
  46. 46.
    Miyoshi K. and Buckley D.H. (1984) “Mechanical-contact-induced transformation from the amorphous to the partially crystalline state in metallic glass”, Thin Sol. Films 118, 363–373.CrossRefGoogle Scholar
  47. 47.
    Chen H., He Y., Shiflet G.J. and Poon S.J. (1994) “Deformation-induced nanocrystal formation in shear bands of amorphous alloys”, Nature 367, 541–543CrossRefGoogle Scholar
  48. 48.
    He Y., Shiflet G.J. and Poon S.J. (1994) “Ball milling-induced nanocrystal formation in aluminium-based metallic glasses”, Acta Metall. Mater. 43, 83–91.Google Scholar
  49. 49.
    Csontos A.A. and Shiflet G.J. (1997) “Formation and chemistry of nanocrystalline phases formed during deformation in aluminium-rich metallic glasses”, NanoStruc. Mater. 9, 281–289.CrossRefGoogle Scholar
  50. 50.
    Fan G.J., Quan M.X. and Hu Z.Q., Li Y.L. and Liang Y. (1996) “On the mechanically driven rapid crystallization of amorphous Si3N4 ceramics”, Appl. Phys. Lett 68, 915–916CrossRefGoogle Scholar
  51. 51.
    Beke D.L. (1996) “Magnetic properties of nanocrystalline Fe, Ni(Fe) and Fe(Si)”, Mater. Sci. Forum 225–227, 701–706.CrossRefGoogle Scholar
  52. 52.
    Courtney T.H. and Wang Z. (1992) “Grinding media wear during mechanical alloying of Ni-W alloys in a SPEX mill”, Scripta Metal. et Mater. 27, 777–782.CrossRefGoogle Scholar
  53. 53.
    Yvon P.J. and Schwarz R.B. (1993) “Effects of iron impurities in mechanical alloying using steel media”, J. Mater. Res. 8, 239–241.CrossRefGoogle Scholar
  54. 54.
    Dussault D., Trudeau M.L., Van Neste A. and Schulz R. (1995) “The influence of Oxygen on the Crystallization Process of Amorphous Powders by Mechanical Deformation”, Advances Powder Particulate Mater. 8, 13–21.Google Scholar
  55. 55.
    Trudeau M.L., Dignard-Bailey L., Schulz, R., Dussault D. and Van Neste V. (1993) “Fabrication of nanocrystalline iron-based lloys by the mechanical crystallization of amorphous materials”, NanoStruc. Mater. 2, 361–368.CrossRefGoogle Scholar
  56. 56.
    Faudot F., Gaffet E. and Harmelin M. (1993) “Identification by DSC and DTA of the oxygen and carbon contamination due to the use of ethanol during mechanical alloying of Cu-Fe powders”, J. Mater. Sci. 28, 2669–2676.CrossRefGoogle Scholar
  57. 57.
    Ivison P.K., Soletta I., Cowlam N., Cocco G., Enzo S. and Battezzati L. (1992) “The effect of absorbed hydrogen on the amorphization of CuTi alloys”, J. Phys: Cond. Matter 4, 5239–5248.CrossRefGoogle Scholar
  58. 58.
    Zaluski L., Zaluska A., Tessier P., Strôm-Olsen J.O. and Sculz R. (1996) “Nanocrystalline Hydrogen Absorbing Alloys”, Mater. Sci. For. 225–227, 853–858.Google Scholar
  59. 59.
    Zaluski L., Zaluska A., Tessier P., Ström-Olsen and R. Schulz (1996) “Hydrogen absorption by nanocrystalline and amorphous Fe-Ti with palladium catalyst, produced by ball milling”, J. Mater. Sci. 31, 695–698.CrossRefGoogle Scholar
  60. 60.
    Trudeau M.L. and Ying J.J. (1996) “Nanocrystalline materials in catalysis and electrocatalysis: structure tailoring and surface reactivity”, NanoStruc. Mater. 7, 245–258.CrossRefGoogle Scholar
  61. 61.
    Van Neste A., Yip S.H., Jin S., Boily S., Ghali E., Guay D. and Schulz R. (1996) “Low overpotential nanocrystalline Ti-Fe-Ru-O cathodes for the production of sodium chlorate”, Mater. Sci. For. 225–227, 795–800.Google Scholar
  62. 62.
    Blouin M., Guay D., Boily S., Van Neste A. and Sculz R. (1996) “Electrocatalytic properties of nanocrystalline alloys: effect of the oxygen concentration in Ti2RuFeO, alloy on the structural and electrochemical properties”, Mater. Sci. For. 225–227, 801–806.Google Scholar
  63. 63.
    Suzuki T. and Nagumo M. (1992) “Mechanochemical reaction of Ti-Al with hydrocarbon during mechanical alloying”, Scripta Metal. et Mater. 27, 1413–1418.CrossRefGoogle Scholar
  64. 64.
    Ding J., Tsuzuki T., McCormick P.G. and Street. R. (1996) “Ultrafine Cu particles prepared by mechanochemical process”, J. Alloys & Comp. 234, L1 - L3.CrossRefGoogle Scholar
  65. 65.
    Chen Y., Halstead T. and Williams J.S. (1996) “Influence of milling temperature and atmosphere on the synthesis of iron nitrides by ball milling”, Mater. Sci. & Eng. A206, 24–29.CrossRefGoogle Scholar
  66. 66.
    Ding J., Tsuzuki T., McCormick P.G. and Street R. (1996) “Structure and magnetic properties of ultrafine Fe powders by mechanochemical processing”, J. Magne Magne. Mater. 162, 271–276.CrossRefGoogle Scholar
  67. 67.
    Zhang H., Kisi E.H. and Myhra S. (1996) “A solid solution pumping mechanism for the nitrogenation of titanium during mechanical deformation in air”, J. Phys. D 29, 1367–1372.CrossRefGoogle Scholar
  68. 68.
    Pardavi-Horvath M. and Takacs L. (1992) “Iron-alumina nanocomposite prepared b,,i ball-milling”, IEEE trans Magne. 28, 3186–3188.CrossRefGoogle Scholar
  69. 69.
    Pardavi-Horvath M. and Takacs L. (1993) “Magnetic properties of copper-magnetites nanocomposite prepared by ball milling”, J. Appl. Phys. 73, 6958–6960.CrossRefGoogle Scholar
  70. 70.
    Matteazzi P. and Le Caër G. (1992) “Synthesis of nanocrystalline alumina-metal composites by room-temperature ball-milling of metal oxides and aluminum”, J. Am. Ceram. Soc. 75, 2749–2755.CrossRefGoogle Scholar
  71. 71.
    Matteazzi P. and Le Caër G. (1992) “Exchange reaction milling in iron nitrides, fluorides and carbides”, J. All. & Comp. 187, 305–315.CrossRefGoogle Scholar
  72. 72.
    McCormick P.G., Ding J., Feutrill E.H. and Street R. (1996) “Mechanically alloyed hard magnetic materials”, J. Magne. Magne. Mater. 157/158, 7–10.CrossRefGoogle Scholar
  73. 73.
    Baumann G., Knothe K. and Fecht H.J. (1997) “Surface modification and nanostructured formation of high speed railway tracks”, NanoStruc. Mater. 9, 751–754.CrossRefGoogle Scholar
  74. 74.
    G. Baumann G, Y. Thong Y. and Fecht H.-J. (1996) “Comparison between nanophase formation during friction induced surface wear and mechanical attrition of a pearlitic steel”, NanoStruc. Mater. 7, 237–244.CrossRefGoogle Scholar
  75. 75.
    Schaffer R.M. and Gonser B.W. (1943) “A sulphate-chloride solution for iron electroplating and electroforming”, Trans. Electrochem. Soc. 84, 319–334.CrossRefGoogle Scholar
  76. 76.
    Trudeau M.L., unpublishedGoogle Scholar
  77. 77.
    Gonzalez F., Brennenstuhl A.M., Palumbo G., Erb U. and Lichtenberger P.C. (1996) “Electrodeposited nanostructured nickel for in-situ nuclear steam generator repair”, Mater. Sci. For. 225–227, 831–836.Google Scholar
  78. 78.
    Choo R.T.C., Toguri J.M., El-Sherik A.M. and Erb (1995) “Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating”, J. Appl. Electrochem. 25, 384–403.CrossRefGoogle Scholar
  79. 79.
    Grimmett D.L., Schwartz M. and Nobe K. (1990) “A comparison of DC and pulse Fe-Ni alloy deposits”, J. Electrochem Soc. 140, 973–978.CrossRefGoogle Scholar
  80. 80.
    Clark D., Wood D. and Erb E. (1997) “Industrial applications of electrodeposited nanocrystals”, NanoStruc. Mater. 9, 755–758.CrossRefGoogle Scholar
  81. 81.
    El-Sherik A.M. and Erb U. (1995) “Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition”, J. Mater. Sci. 30, 5743–5749.CrossRefGoogle Scholar
  82. 82.
    Erb U., Palumbo G., Szpunar B and Aust K.T. (1997) “Electrodeposited vs. consolidated nanocrystals: difference and similarities”, NanoStruc. Mater. 9, 261–270.CrossRefGoogle Scholar
  83. 83.
    Erb U. (1995) “Electrodeposited nanocrystals: synthesis, properties and industrial applications”, Nanostruc. Mater. 6, 533–538.CrossRefGoogle Scholar
  84. 84.
    Bryden K.J. and Ying J.Y. (1997) “Electrodeposition synthesis and hydrogen absorption properties of nanostructured palladium-iron alloys”, NanoStruc. Mater. 9, 485–488.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Michel L. Trudeau
    • 1
  1. 1.Emerging TechnologyInstitut de recherche d’Hydro-Québec (IREQ)VarennesCanada

Personalised recommendations