Chemical Synthesis and Processing of Nanostructured Particles and Coatings

  • G. M. Chow
Part of the NATO ASI Series book series (ASHT, volume 50)


An overview of the synthesis and processing of nanostructured particles and coatings using chemical routes is presented. Solution chemistry approaches offer advantages of the design of materials at the molecular level that can result in better homogeneity for multiphase materials, and cost-efficient bulk quantity production in many cases. Of particular importance, solution chemistry allows for the control of particle size and particle size distribution, and the control of agglomerate size and agglomerate size distribution, through effective manipulation of the parameters determining nucleation, growth and agglomeration at the molecular level. In this paper, selected examples of metallic, ceramic and hybrid materials prepared by aqueous, nonaqueous, sol-gel and surfactant mediated methods are given. The effects of the synthesis and processing conditions on the phases, microstructures, control of particle size and agglomeration, impurities incorporation, defects formation and properties are addressed.


High Resolution Transmission Electron Microscopy Nanostructured Material Nanocomposite Powder Polyol Process Polyol Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edelstein, A.S. and Cammarata R.C. (eds.) (1996), Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Publishing, Bristol and Philadelphia (author’s comment: this is a reasonably updated comprehensive text book).Google Scholar
  2. 2.
    Ellis, A.B., Geselbracht, M.J., Johnson, B.J., Lisensky, G.C., and Robinson, W.R. (1993), Teaching General Chemistry: A Materials Science Companion, American Chemical Society, Washington, D.C.Google Scholar
  3. 3.
    Chow, G.M. and Gonsalves, K.E. (1996), Particle synthesis by chemical routes, in Edelstein, A.S. and Cammarata R.C. (eds.), Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Publishing, Bristol and Philadelphia, pp. 55–71.Google Scholar
  4. 4.
    Herron, N., and Wang, Y. (1996), Synthesis of semiconductor nanoclusters, in Edelstein, A.S. and Cammarata R.C. (eds.), Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Publishing, Bristol and Philadelphia, pp. 73–88.Google Scholar
  5. 5.
    Klein, L.C. (1996), Processing of nanostructured sol-gel materials, in Edelstein, A.S. and Cammarata R.C. (eds.), Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Publishing, Bristol and Philadelphia, pp. 147–164.Google Scholar
  6. 6.
    Rolison, D.R. (1996), Chemical properties, in Edelstein, A.S. and Cammarata R.C. (eds.), Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Publishing, Bristol and Philadelphia, pp. 305–321.Google Scholar
  7. 7.
    Chow, G.M. and Gonsalves, K.E. (eds.) (1996), Nanotechnology: Molecularly Designed Materials, American Chemical Society Symposium Series 622, Washington, DC.Google Scholar
  8. 8.
    Special issue: Nanostructured Materials (1996), Chemistry of Materials 8, Washington, DC.Google Scholar
  9. 9.
    Gonsalves, K.E., Chow, G.M., Xiao, T.D., and Cammarata, R.C. (eds.) (1994), Molecularly Designed Ultrafine/ Nanostructured Materials, Materials Research Society Symposium Proceedings 351, Pittsburgh, Pennsylvania.Google Scholar
  10. 10.
    Nielsen, A.E. (1964), Kinetics of Precipitation, Pergamon Press, London, New York.Google Scholar
  11. 11.
    Walton, A.G. (1979), The Formation and Properties of Precipitates, Robert Krieger Publishing Company, Huntington, New York (reprint edition).Google Scholar
  12. 12.
    Lagally, M.G. (1993), An atomic-level view of kinetic and thermodynamic influences in the growth of thin films: a review, Japanese Journal of Applied Physics 32, pp. 1493–1501.CrossRefGoogle Scholar
  13. 13.
    Turnbull, D. (1953), The kinetics of precipitation of barium sulfate from aqueous solutions, Acta Metallurgica 1, pp. 684–691.CrossRefGoogle Scholar
  14. 14.
    LaMer, V. K. and Dinegar, R. H. (1950), Theory, production and mechanism of formation of monodispersed hydrosols, J. American Chemical Society 72, pp. 4847–4854.CrossRefGoogle Scholar
  15. 15.
    Yang, K. C. and Rowan, B. D. (1984), Production of gold, platinum, and palladium powders, in Metals Handbook Ninth Edition 7 American Society for Metals, Metals Park, Ohio, pp. 148–151.Google Scholar
  16. 16.
    van Wonterghem, J., Morup, S., Koch, C.J.W., Charles, S.W. and Wells, S., (1986), Formation of ultra-fine amorphous alloy particles by reduction in aqueous solution, Nature 322, pp. 622–623.CrossRefGoogle Scholar
  17. 17.
    Glavee, G.N., Klabunde, K.J., Sorensen, C.M. and Hadjipanayis, G.C. (1993), Borohydride reduction of cobalt ions in water. Chemistry leading to nanoscale metal, boride, or borate particles, Langmuir 9, pp. 162–169.CrossRefGoogle Scholar
  18. 18.
    Glavee, G.N., Klabunde, K.J., Sorensen, C.M. and Hadjipanayis, G.C. (1993), Sodium borohydride reduction of cobalt ions in nonaqueous media: Formation of ultrafine particle(nanoscale) of cobalt metal, Inorg. Chem. 32, pp. 474–477.Google Scholar
  19. 19.
    Chow, G.M., Ambrose, T., Xiao, J.Q., Twigg, M.E., Baral, S., Ervin, A.M., Qadri, S.B. and Feng, C.R. (1992), Chemical precipitation and properties of nanocrystalline Fe-Cu alloy and composite powders, Nanostructured Materials 1, pp. 361–368.CrossRefGoogle Scholar
  20. 20.
    Chow, G.M., Ambrose, T., Xiao, J., Kaatz, F., and Ervin, A. (1993), Nanostructured Co-Cu powders via a chemical route, Nanostructured Materials 2, pp. 131–138.CrossRefGoogle Scholar
  21. 21.
    Fievet, F., Lagier, J.P., and Figlarz, M. (1989) Preparing monodisperse metal powders in micrometer and submicrometer size by the polyol process, Materials Research Society Bulletin 14, 29–34.Google Scholar
  22. 22.
    Kurihara, L.K., Chow, G.M., and Schoen, P.E. (1995), Nanocrystalline metallic powders and films produced by the polyol method, Nanostructured Materials 5, pp. 607–613.CrossRefGoogle Scholar
  23. 23.
    Chow, G.M., Schoen, P.E., and Kurihara, L.K. (1995), Nanostructured metallic powders and films via an alcoholic solvent process, US Navy Case No. 76,572, US patent application pending.Google Scholar
  24. 24.
    Chow, G.M., Kurihara, L.K., Kemner, K.M., Schoen, P.E., Elam, W.T., Ervin, A., Keller, S., Zhang, Y.D., Budnick, J., and Ambrose, T. (1995), Structural, morphological and magnetic study of nanocrystalline cobalt-copper powders synthesized by the polyol process, J. Mater. Res. 10, pp. 1546–1554.CrossRefGoogle Scholar
  25. 25.
    Chow, G.M., Kurihara, L.K., and Schoen, P.E. (1996), Synthesis of nanostructured composite particles using a polyol process, Navy Case No. 77,467, US patent application pending.Google Scholar
  26. 26.
    Gonsalves, K.E., Xiao, T.D., Chow, G.M., and Law, C.C. (1994), Synthesis and processing of nanostructured M50 type steel, Nanostructured Materials 4, pp. 139–147.CrossRefGoogle Scholar
  27. 27.
    Feng, C.R., Chow, G.M., Rangarajan, S.P., Chen, X, Gonsalves, K.E., and Law, C. (1997), TEM and HRTEM characterization of nanostructured M50 type steel, Nanostructured Materials 8, pp. 45–54.CrossRefGoogle Scholar
  28. 28.
    Chow, G.M., Feng, C.R., Rangarajan, S.P., Chen, X, Gonsalves, K.E., and Law, C. (1997), Microstructural study of nanostructured M50 type steel, in Ma, E., Fultz, B., Shull, R., Morral, J. and Nash, P. (eds.), Chemistry and Physics of Nunostructures and Related Non-Equilibrium Materials, the Minerals, Metals & Materials Society, pp. 157–162.Google Scholar
  29. 29.
    Gallagher, P.K. (1991), Chemical synthesis, in Engineered Materials Handbook, Volume 4: Ceramics and Glasses, ASM International, USA, pp. 52–64.Google Scholar
  30. 30.
    Shoup, R.D. (1991), Sol-gel processes, in Engineered Materials Handbook, Volume 4: Ceramics and Glasses, ASM International, USA, pp. 445–452.Google Scholar
  31. 31.
    Gonsalves, K.E., Chow, G.M., Zhang, Y., Budnick, J.I. and Xiao, T. D. (1994), Iron nitride/boron nitride magnetic nanocomposite powders, Advanced Materials 6, pp. 291–292.CrossRefGoogle Scholar
  32. 32.
    Xiao, T.D., Gonsalves, K.E. and Strutt, P.R. (1993), Synthesis of aluminum nitride/boron nitride materials, J. Am. Ceram. Soc. 76, pp. 987–992;CrossRefGoogle Scholar
  33. Xiao, T.D., Gonsalves, K.E., Strutt, P.R., Chow, G.M., and Chen, X. (1993), Synthesis of AIN/BN composite materials via chemical processing, Ceramic Science and Engineering Proceedings 14, pp. 1107–1114.CrossRefGoogle Scholar
  34. 33.
    Chow, G.M., Xiao, T.D., Chen, X and Gonsalves, K.E. (1994), Compositional and thermal effects on chemically processed AIN-BN nanocomposite powders, J. Mater. Res. 9, pp. 168–175.CrossRefGoogle Scholar
  35. 34.
    Kurihara, L.K., Chow, G.M., Choi, L.S., and Schoen, P.E. (1997), Chemical synthesis and processing of nanostructured aluminum nitride, in Battle, T.P. and Henein, H. (eds.), Processing and Handling of Powders and Dusts, the Minerals, Metals, and Materials Society, Warrendale, PA, pp. 312.Google Scholar
  36. 35.
    Kurihara, L.K., Chow, G.M., and Schoen, P.E. (1997), Nanostructured ceramic nitride powders and a method of making the same, Navy Case No. 77,219, US patent application pending.Google Scholar
  37. 36.
    Kurihara, L.K., Chow, G.M., Baraton, M.I., Schoen, P.E., Rayne, R., Bender, B., Lewis, D., and Choi, L.S. (1997), Synthesis and pressureless sintering of nanostructured AIN Powders derived from solution chemistry precursors, submitted to J. Am. Ceram. Soc.Google Scholar
  38. 37.
    Chow, G.M., Markowitz, M.A., and Singh, A. (1993), Synthesizing submicrometer and nanoscale particles via self-assembled molecular membranes, Journal of the Minerals, Metals and Materials Society 45, pp. 62–65.CrossRefGoogle Scholar
  39. 38.
    Smith, T.W., and Wychick, D. (1980), Colloidal iron dispersions prepared via the polymer-catalyzed decomposition of iron pentacarbonyl, J. Phys. Chem. 84, pp. 1621–1629.CrossRefGoogle Scholar
  40. 39.
    Bradley, J.S., Hill, E.W., Klein, C., Chaudret, B., and Duteil, A. (1993), Synthesis of monodispersed bimetallic palladium-copper nanoscale colloids, Chem. Mater. 5, pp. 254–256.CrossRefGoogle Scholar
  41. 40.
    Hedge, M.S., Larcher, D., Dupont, L., Beaudoin, B., Tekaia-Elhsissen, K. and Tarascon, J.M. (1997), Synthesis and chemical reactivity of polyol prepared monodisperse nickel powders, Solid State Ionics 93, pp. 33–50.Google Scholar
  42. 41.
    van Wonterghem, J., Morup, S., Charles, S.W., Wells, S., and Villadsen, J. (1985), Formation of a metallic glass by thermal decomposition of Fe(CO)5, Physical Review Letters 55, pp. 410–413.CrossRefGoogle Scholar
  43. 42.
    Shanefield, D.J. (1995), Organic Additives and Ceramic Processing, with Applications in Powder Metallurgy, Ink and Paint, Kluwer Academic Publishers, Boston, Dordrecht, London.Google Scholar
  44. 43.
    Chen, X, Gonsalves, K.E., Chow, G.M., and Xiao, T.D. (1994), Homogeneous dispersion of nanostructured aluminum nitride in a polyimide matrix, Advanced Materials 6, pp. 481–484.CrossRefGoogle Scholar
  45. 44.
    Fendler, J.H. (1987), Atomic and molecular clusters in membrane mimetic chemistry, Chem. Rev. 87, pp. 877–899.CrossRefGoogle Scholar
  46. 45.
    Puvvada, S., Baral, S, Chow, G.M., Qadri, S.B., and Ratna, B.R. (1994), Synthesis of palladium metal nanoparticles in the bicontinuous cubic phase of glycerol monooleate, J. Am. Chem. Soc. 116, pp. 2135–2136.CrossRefGoogle Scholar
  47. 46.
    Wilcoxon, J.P., Williamson, R.L. and Baughman, R. (1993), Optical properties of gold colloids formed in inverse micelles, J. Chem. Phys. 98, pp. 9933–9950.CrossRefGoogle Scholar
  48. 47.
    Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., and Brus, L.E. (1990), Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media, Journal of the American Chemical Society, J. Am. Chem. Soc., 112, pp. 1327–1332CrossRefGoogle Scholar
  49. 48.
    Mann, S., and Williams, R.J.P. (1983), Precipitation within unilamellar vesicles. Part 1. studies oa silver oxide formation, J. Chem. Soc. Dalton Trans. pp. 311–316.Google Scholar
  50. 49.
    Mann, S., and Hannington, J.P. (1988), Formation of iron oxides in unilamellar vesicles, Journal of Colloid and Interface Science 122, pp. 326–335.CrossRefGoogle Scholar
  51. 50.
    Bhandarkar, S., and Bose, A. (1990), Synthesis of submicrometer crystals of aluminum oxide by aqueous intravesicular precipitation, Journal of Colloid and Interface Science 135, pp. 531–538.CrossRefGoogle Scholar
  52. 51.
    Markowitz, M.A., Chow, G.M., and Singh, A. (1994), Polymerized phospholipid membrane mediated synthesis of metal nanoparticles, Langmuir 10, pp. 4905–4102.CrossRefGoogle Scholar
  53. 52.
    Chow, G.M., Markowitz, M.A., Rayne, R., Dunn, D.N., and Singh, A. (1996), Phospholipid mediated synthesis and characterization of gold nanoparticles, Journal of Colloid and Interface Science 183, pp. 135–142.CrossRefGoogle Scholar
  54. 53.
    Froes, F. H., Suryanarayana, C., Russell, K. C., and Ward-Close, C. M. (1995), Far from equilibrium processing of light metals, in Singh, J., and Copley, S.M. (eds.), Novel Techniques in Synthesis and Processing of Advanced Materials, the Minerals, Metals & Materials Society, pp. 1–21.Google Scholar
  55. 54.
    Brinker, C.J., Hurd, A.J., Schunk, P.R., Frye, G.C., and Ashley, C.S. (1992), Review of sol-gel files formation, Journal of Non-Crystalline Solids 147&148, pp. 424–436.CrossRefGoogle Scholar
  56. 55.
    Barrow, D.A., Petroff, T.E., and Sayer, M. (1995), Thick ceramic coatings using a sol gel based ceramic-ceramic 0–3 composite, Surface and Coatings Technology 76–77, pp. 113–118.CrossRefGoogle Scholar
  57. 56.
    Kossovsky, N, Gelman, A., Hnatyszyn, H.J., Rajguru, S., Garrell, R.L., Torbati, S., Freitas, S. S.F., and Chow, G.M. (1995), Surface-modified diamond nanoparticles as antigen delivery vehicles, Bioconjugate Chem. 6, pp. 507–511.CrossRefGoogle Scholar
  58. 57.
    Ross, C.A. (1994), Electrodeposited multilayer thin films, Annu. Rev. Mater. Sci. 24, pp. 159–88.CrossRefGoogle Scholar
  59. 58.
    Erb, U. (1995), Electrodeposited nanocrystals: synthesis, structure, properties and future applications, Canadian Metallurgical Quarterly 34, pp. 275–280.Google Scholar
  60. 59.
    Palumbo, G., Gonzalez, F., Brennenstuhl, A.M., Erb, U. Shmayda, W., and Lichtenberger, P.C. (1997), In-situ nuclear steam generator repair using electrodeposited nanocrystalline nickel, Nanostructured Materials 9, pp. 737–746.CrossRefGoogle Scholar
  61. 60.
    Riedel, W. (1991), Electroless Nickel Plating, Finishing Publications Ltd., Stevenage, Hertfordshire, England.Google Scholar
  62. 61.
    Brandow, S.L., Dressick, W.J., Marrian, C.R.K., Chow, G.M., and Calvert, J.M. (1995), The morphology of electroless Ni deposition on a colloidal Pd (II) catalyst, Journal of the Electrochemical Society 142, pp. 2233–2243.CrossRefGoogle Scholar
  63. 62.
    Chow, G.M., Pazirandeh, M., Baral S., and Campbell, J.R. (1993), TEM & HRTEM characterization of metallized nanotubules derived from bacteria, Nanostructured Materials 2, pp. 495–503.CrossRefGoogle Scholar
  64. 63.
    Krebs, J.J., Rubenstein, M., Lubitz, P., Harford, M.Z., Baral, S., Shashidhar, S., Ho, Y.S., Chow, G.M., and Qadri, S. (1991), Magnetic properties of permalloy-coated organic tubules, J. Appl. Phys. 70, pp. 6404–6406.CrossRefGoogle Scholar
  65. 64.
    Chow, G.M., Stockton, W.B., Price, R., Baral, S., Ting, A.C., Ratna, B.R., Schoen, P.E., Schnur, J.M., Bergeron, G.L., Czarnaski, M.A., Hickman, J.J., and Kirkpatrick, D.A. (1992), Fabrication of biologically based microstructure composites for vacuum field emission, Materials Science and Engineering A158, pp. 1–6.Google Scholar
  66. 65.
    Kirkpatrick, D.A., Bergeron, G.L., Czarnaski, M.A., Hickman, J.J., Chow, G.M., Price, R., Ratna, B.R., Schoen, P.E., Stockton, W.B., Baral, S., Ting, A.C. and Schnur, J.M. (1992), Demonstration of vacuum field emission from a self-assembling biomolecular microstructure composite, Appl. Phys. Lett. 60, pp. 1556–1558.CrossRefGoogle Scholar
  67. 66.
    Chow, G.M., Kurihara, L.K., Feng, C.R., Schoen, P.E. and Martinez-Miranda, L.J. (1997), Alternative approach to electroless Cu metallization of AIN by a nonaqueous polyol process, Appl. Phys. Lett. 70, pp. 2315–2317.CrossRefGoogle Scholar
  68. 67.
    Eriksson, G., Siegbahn, H., Andersson, S., Turkki, T. and Muhammed, M. (1997), The reduction of Co2+ by polyalcohols in the presence of WC surfaces studied by XPS, Materials Research Bulletin 32, pp. 491–499.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • G. M. Chow
    • 1
  1. 1.Material Science and Technology Division, code 6323Naval Research LaboratoryUSA

Personalised recommendations