Advertisement

Consolidation of Nanocrystalline Materials at High Pressures

  • V. S. Urbanovich
Part of the NATO ASI Series book series (ASHT, volume 50)

Abstract

The main problem of consolidation of particulate nanostructured materials is to provide a complete compaction with retention of the nanocrystalline structure, i.e. maintaining the grain size characteristic of the initial ultrafine powder (UFP). Conventional sintering and hot pressing methods are not acceptable due to intensive recrystallization process. Currently, high energy consolidation techniques - various static and dynamic techniques of high pressures (conventional techniques of high pressures and high temperatures, hot forging and hot extrusion, explosive compaction and shock wave sintering), as well as electric discharge compacting are the most promising routes to fabricate powder nanocrystalline materials [1,2].

Keywords

Shock Wave Relative Density Superhard Material Titanium Nitride Diamond Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrievski, R.A. (1994) Fabrication and Properties of Nanocrystalline High-Melting Compounds, Successes of Chemistry 63, 431–448 (in Russian).Google Scholar
  2. 2.
    Andrievski, R.A. (1997) State-of-Art and Perspectives in the Fild of Particulate Nanostructured Materials, Int. Symp. “New Materials and Technologies in Powder Metallurgy”, March 19–20, 1997, Minsk, Belarus (in press.).Google Scholar
  3. 3.
    Krupin, A.V., Solovyov, V.Ya., Sheftel, N.I., Kobelev A.G. (1975) Explosive Deformation of Metals, Metallurgia, Moskow (in Russian).Google Scholar
  4. 4.
    Altshuler, L.V. (1965) Application of Shock Waves in High Pressure Physics, Successes of Physical Sciences 85, 197–258 (in Russian).Google Scholar
  5. 5.
    Sawaoka, A.B. (1988) Shock Compaction and Consolidation of Non-Oxide Ceramic Powders as a Manufacturing Process, in L.E. Murr (ed.), Shock Waves for Industrial Applications, Oregon Graduate Center, Beaverton, New-Jersey, USA, pp. 380–405.Google Scholar
  6. 6.
    Novikov N.V. et al. (1986) Synthetic Superhard Materials, Naukova Dumka, Kiev (in Russian).Google Scholar
  7. 7.
    Frantsevich, I.N., Gnesin, G.G., Kurdumov, A.V. et al. (1980) Superhard Materials, Naukova Dumka, Kiev (in Russian).Google Scholar
  8. 8.
    Urbanovich, V.S., Shipilo, V.B. (1997) Physicomechanical and Thermophysical Properties of High-Melting Compounds-Based Ceramics Sintered at High Pressures in P. Abelard et al. (eds.), Euro Ceramics V,Trans Tech Publications, Switzerland 2, pp. 1027–1030.Google Scholar
  9. 9.
    Yohe, W.C. and Ruoff, A.L. (1978) Ultrafine-Grain Tantalum Carbide by High Pressure Hot Pressing, Am. Ceram. Soc. Bull. 57, 1123–1125, 1130.Google Scholar
  10. 10.
    Gleiter, H. (1981) in N. Hansen, T. Leffers, and H. Lilholt (eds.) “Deformation of Polycrystals: Mechanisms and Microstructures” Riso Nat.Labor., Roskilde, p. 15.Google Scholar
  11. 11.
    Jakovlev, E.N., Grjaznov, G.M, Serbin, V.I. et al. (1983) Fabfication of Nickel Polycrystals with Higher Hardness by Ultrafine Powders Pressing, SURFACE. Physics, Chemistry, Mechanics 4, 138–141 (in Russian).Google Scholar
  12. 12.
    Kondo, K., Soga, S., Sawaoka, A., and Araki, M. (1985) Shock Compaction of Silicon Carbide Powder, J. of Material Science 20, 1033–1048.CrossRefGoogle Scholar
  13. 13.
    Birringer, R., Herr, U., Gleiter, H. (1986) Trans. Jpn. Inst. Met. Suppl., 27, 43.Google Scholar
  14. 14.
    Novikov, V.I., Ganelin, V.Ya, Trusov, L.I. et al. (1986) Retardation of Recrystallization of Ni Ultrafine Powder under High Hydrostatic Pressure, Metal- Physics 8, 111–113 (in Russian).Google Scholar
  15. 15.
    Siegel, R.W., Hahn, H. (1987), in M.Yussouff (ed.), Current Trends in the Physics of Materials, World Scientific, Singapore, p. 403.Google Scholar
  16. 16.
    Andrievski, R.A., Zeer, S.E., Leontiev, M.A. (1987) Peculiarities of Pressing and Sintering of Nickel and Silicon Nitride Ultrafine Powders in I.V. Tananaev (ed.), Physics-Chemistry of Ultradispersed Media, Nauka, Moscow, pp. 197–203 (in Russian).Google Scholar
  17. 17.
    Andrievski, R.A. (1993) Properties of Nanocrystalline High-Melting Compounds (Review), Powder Metallurgy 11/12, 85–91 (in Russian).Google Scholar
  18. 18.
    Andrievski, R.A. (1995) Silicon Nitride–Synthesis and Properties, Russ. Chem. Rev., 64, 311–329 (in Russian).CrossRefGoogle Scholar
  19. 19.
    Taniguchi, T. and Kondo, K. (1988) Hot Shock Compaction of a-Alumina Powder, Advanced Ceramic Materials 3, 399–402.Google Scholar
  20. 20.
    Kondo, K. and Sawai, S. (1990) Fabricating Nanocrystalline Diamond Ceramics by a Shock Compaction Method, J. Am. Ceram. Soc. 73, 1983–1991.CrossRefGoogle Scholar
  21. 21.
    Kovtun, V.I., Kurdyumov, A.V., Zelyayski, V.B. (1992) Phase and Structural Transformation of Wurtzite Boron Nitride during the Sintering in Shock Waves, Powder Metallurgy 12, 38–43 (in Russian).Google Scholar
  22. 22.
    Hirai, H. and Kondo K. (1994) Shock-Compacted Si3N4 Nanocrystalline Ceramics: Mechanisms of Consolidation and of Transition from α-to β-form, J. Am. Ceram. Soc. 77, 487–492.CrossRefGoogle Scholar
  23. 23.
    Ivanov, V.V., Kotov, Yu.A., Samatov, O.N. et al. (1995) Synthesis and Dynamic Compaction of Ceramic Nano Powders by Techniques based on Electric Pulsed Power, Nanostructured Materials 6, 287–290.CrossRefGoogle Scholar
  24. 24.
    Andrievski, R.A., Vikhrev, A.N., Ivanov, V.V. et al. (1996) Compacting Ultrafine Titanium Nitride Using a Magnetic Impulse Method and under a Shearing Strain and Higher Pressures, Physics of Metals and Metal Science 81, 137–145 (in Russian).Google Scholar
  25. 25.
    Kondo, K and Hirai, H. (1996) Shock-Compaction of Nano-Sized Diamond Powder, as Examined by Microstructural Analysis, J. Am. Ceram. Soc. 79, 97–101.CrossRefGoogle Scholar
  26. 26.
    Ivanov, V.V., Paranin, S.N., Vikhrev, A.N. (1997) Compacting Nanosize Powders of Hard Materials Using a Magnetic Impulse Method in G.G. Taluts and N.I. Noskova (eds.), Structure, Phase Transformations and Properties of Nanocrystalline Alloys, UD RAS, Ekaterinburg, pp. 46–56 (in Russian).Google Scholar
  27. 27.
    Ogino, Y., Yamasaki, T. and Shen, B.L. (1997) Indentantion Creep in Nanocrystalline Fe-TiN and Ni-TiN Alloys Prepared by Mechanical Alloying, Metallurgical and Materials Transactions B 28B, 299–306.CrossRefGoogle Scholar
  28. 28.
    Andrievski, R.A., Kalinnikov, G.V., Potafeev, A.F., and Urbanovich, V.S. (1995) Synthesis, Structure and Properties of Nanocrystalline Nitrides and Borides, Nanostructured Materials 6, 353–356.CrossRefGoogle Scholar
  29. 29.
    Andrievski, R.A., Urbanovich, V.S., Kobelev, N.P., and Kuchinski, V.M. (1995) Structure, Density and Properties Evolution of Titanium Nitride Ultrafine Powders under High Pressures and High Temperatures, in A. Bellosi (ed.), Fourth Euro Ceramics, Basic Sciences–Trends in Emerging Materials and Applications, Gruppo Edit. Faenza, Printed in Italy 4, pp. 307–312.Google Scholar
  30. 29.
    Andrievski, R.A., Urbanovich, V.S., Kobelev, N.P., and Kuchinski, V.M. (1995) Structure, Density and Properties Evolution of Titanium Nitride Ultrafine Powders under High Pressures and High Temperatures, in A. Bellosi (ed.), Fourth Euro Ceramics, Basic Sciences–Trends in Emerging Materials and Applications, Gruppo Edit. Faenza, Printed in Italy 4, pp. 307–312.Google Scholar
  31. 29.
    Andrievski, R.A., Urbanovich, V.S., Kobelev, N.P., and Kuchinski, V.M. (1995) Structure, Density and Properties Evolution of Titanium Nitride Ultrafine Powders under High Pressures and High Temperatures, in A. Bellosi (ed.), Fourth Euro Ceramics, Basic Sciences–Trends in Emerging Materials and Applications, Gruppo Edit. Faenza, Printed in Italy 4, pp. 307–312.Google Scholar
  32. 32.
    Andrievski, R.A. (1997) Properties and Structure of Nanocrystalline and Multi-layer of Titanium Nitrides and Borides, in G.G. Taluts and N.I. Noskova (eds.), Structure, Phase Transformations and Properties of Nanocrystalline Alloys, UD RAS, Ekaterinburg, pp. 37–46 (in Russian).Google Scholar
  33. 33.
    Ryabinin, Yu.N. (1956) About Some Experiences for Dynamic Compacting of Substances, Technical Physics Review 26, 2661–2666 (in Russian).Google Scholar
  34. 34.
    Gerasimovich, A.V. (1987) General Problems of Engineering High Pressure Apparatuses in B.I. Beresnev (ed), Effect of High Pressures on Substance, Naukova Dumka, Kiev, 2, pp. 88–98 (in Russian).Google Scholar
  35. 35.
    Bradley, C.C. (1969) High Pressure Methods in Solid State Research, Butter-worths, London.Google Scholar
  36. 36.
    Tsiklis, D.S. (1976) Techniques of Physical and Chemical Investigations at High and Superhigh Pressures, Khimiya, Moskow (in Russian).Google Scholar
  37. 37.
    Bridgman, P.W. (1952) Proc. Amer. Acad. Arts Sci., 81, 165.CrossRefGoogle Scholar
  38. 38.
    Pat. 1360281, Greate Britain, ICI B 01 J 3/00. High Pressure and High Temperature Apparatus,Vereschagin, L.F., Bakul, V.N., Semertchan, A.A. et al. - Publ. 17.07.74.Google Scholar
  39. 39.
    Pat. 3695797, USA, ICI B 30 B 11/32. Apparatus for Creation of High Pressure,Bakul, V.N., Prihna, A.I., Shuljenko, A.A. and Gerasimovich, A.V. - Publ. 03.10.74.Google Scholar
  40. 40.
    Pat. 3790322, USA, ICI B 30 B 11/32. Apparatus for Creation of High Pressures and High Temperatures,Sirota, N.N., Mazurenko, A.M. and Strukov, N.A. - Publ. 05.02.74.Google Scholar
  41. 41.
    Pat. 1392, Belarus, ICI B 01 J 3/06. Apparatus for Creation of High Pressure, Shipilo, V.B. - Prioritet 08.07. 94 (in Russian).Google Scholar
  42. 42.
    Mazurenko, A.M., Urbanovich, V.S., and Kuchinski V.M. (1994) A High Pressure Apparatus for Sintering of High-Melting Compounds Based Ceramics, Vestsi of Belarus. Acad. Sci., ser. phys.-techn. sci. 1, 42–45 (in Russian).Google Scholar
  43. 43.
    Urbanovich, V.S. (1994) On account for the Geometrical Form of Hard-Alloy dies when Designing HPA of the Anvil-with Receeses Type, Physics and Technique of High Pressures, FTINT of Ukr. Acad. Sci. Kharkov, 4, 66–69 (in Russian).Google Scholar
  44. 44.
    Platen, B. (1962) Multi-Piston High Pressure and High Temperature Apparatus in R.H.Wentorf (ed.) Modern Very High Pressure Techniques, Schenectady, London, pp. 191–216.Google Scholar
  45. 45.
    Urbanovich, V.S. (1997) The Diamond and Hard Alloy-Based Composite Material in M.A.Prelas et al. (eds.) Diamond Based Composites and Related Materials, Kluwer Academic Publishers, Dordrecht, pp. 53–62.CrossRefGoogle Scholar
  46. 46.
    Alexandrov, I.V., Kilmametov, A.R., Mishlyaev, M.M., Baliev, R.Z. (1997) Peculiarities of Nanocrystalline Material Structure Produced Using an Intensive Plastic Strain in G.G. Taluts and N.I. Noskova (eds.) The Structure, Phase Transformations and Properties of Nanocrystalline Alloys, UD RAS, Ekatirinburg, pp. 57–69.Google Scholar
  47. 47.
    Segal, V.M., Reznikov, V.I., Kopilov, V.I. et al. (1994) Processes of Plastic Structure Formation In Metals,Nauka i Tekhnika, Minsk (in Russian).Google Scholar
  48. 48.
    Segal, V.M (1974) Methods for Investigating the Stressed-Strained State on the Processes of Plastic Deformation, Doctoral Dissertation of Eng., Minsk.Google Scholar
  49. 49.
    Bridgman, P.V. (1955) Investigation of Severe Plastic Deformations and Raptures, Izdatelstvo inostrannoi literaturi, Moscow (in Russian).Google Scholar
  50. 50.
    Vereshchagin, L.F., Zubova, E.V., Shapochkin, V.A. (1960) Equipment and Methods of measuring shear in solids under high pressures, Instrumentation and Equipment of the Experiment 5, 89–93 (in Russian).Google Scholar
  51. 51.
    Vereshchagin, L.F., Zubova, E.V., Burdina, K.P., Apamikov, G.L. (1982) Behavior of Oxides under the Action of High Pressures with Simultaneous Application of the Shearing Stress in I.S. Gladkaja et al.(eds.) Vereshchagin, L.F. Synthetic Diamonds and Hydroextrusion, Nauka, Moscow, pp. 319–321 (in Russian).Google Scholar
  52. 52.
    Andrievski, R.A. (1991) Particulate Materials Science, Metallurgia, Moscow (in Russian).Google Scholar
  53. 53.
    Morokhov, I.D., Trusov, L.I., and Lapovok, V.N. (1984) Physical Phenomena in Ultrafine Media, Energoatomizdat, Moscow (in Russian).Google Scholar
  54. 54.
    Kisly, P.S., and Kuzenkova, M.A. (1980) Sintering of Refractory Compounds, Naukova Dumka, Kiev (in Russian).Google Scholar
  55. 55.
    Chigik, S.P., Gladkikh, N.T., Grogorieva, L.K. and Kuklin, R.N. (1984) Dimensional Dependence of Diffusion in Small Particulates, in Physics and Chemistry and Technology of Fine Powders, IPM AS USSR, Kiev, pp. 121–124 (in Russian).Google Scholar
  56. 56.
    Shulga, Yu.M., Morayskaya, T.M., Gurov, S.V. (1990) Investigation of the Ultrafine Boron Nitride Using X-Ray Photoelectron Spectroscopy and Spectroscopy of the Characteristic Energy Losses Techniques, SURFACE. Physics, Chemistry, Mechanics, 10, 155–157 (in Russian).Google Scholar
  57. 57.
    Djamarov, S.S., Kurdyumov, A.V., Oleinik, G.S. et al. (1982) Specifics of Forming the Sinter Microstructure Based on Wurtcit BN (hexanite–P), Powder Metallurgy 8, 32–37 (in Russian).Google Scholar
  58. 58.
    Djamarov, S.S., Pavlenko, N.P., Bozhko A.V., Kornienko, P.A. (1982) Specifics of Cold Compaction of Wurtcit Boron Nitride under High Pressures, Powder Metallurgy 10, 6–10 (in Russian).Google Scholar
  59. 59.
    Mazurenko, A.M., Urbanovich, V.S., Leonovich, T.I. (1987) Physical and Mechanical Properties of Metal Diborides of IVa, Va Groups Sintered under High Pressures, Powder Metallurgy 7, 37–40 (in Russian).Google Scholar
  60. 60.
    Meyers, M.A., Thadhani, N.N. and Yu, L.H. (1988) Explosive Shock Wave Consolidation of Metal and Ceramic Powders, in L.E.Murr (ed.), Shock Waves for Industrial Applications, Oregon Graduate Center, Beaverton, New-Jersey, USA, pp. 265–334.Google Scholar
  61. 61.
    Leontieva, A.V., Streltsov, V.A., Feldman, E.P. (1986) Brittle and Plastic Transition in Crystals under the Hydrostatic Pressure, Physics and Techniques of High Pressures 22, 16–30 (in Russian).Google Scholar
  62. 62.
    Frantsevich, I.N., Voronov, F.F. and Bakuta, C.A. (1982) Elastic Constants and Elasticity Moduli of Metals and Non-Metals, Reference Book, Naukova Dumka, Kiev (in Russian).Google Scholar
  63. 63.
    Akaishi, M., Fukunaga, O., Horie, Y. Et al. (1984) Effects of Dynamic and Isostatic Compaction on the Microstructure and Mechanical Behaviour of AIN, TiB2 and TiC in High Pressure Science and Technology–Proc. IX AIRAPT Int. High Pressure Conf., Albany, N.Y. July 24–29, 1983, New York e.a. 3, pp. 159–162.Google Scholar
  64. 64.
    Su, W., Sui, Yu., Xu, D., and Zheng, F. (1996) High Pressure Research on Nanocrystalline Solid Materials, in W.A.Trzeciakowski (ed.) High Pressure Science and Technology, World Scientific Publishing Co. Pte. Ltd, Singapore, pp. 203–207.Google Scholar
  65. 65.
    Andrievski, R.A., Grebtsova, O.M., Domachneva, E.P. et al. (1993) Consolidation of Ultrafine Titanium Nitride at High Pressures, Rus. Reports Acad. Sci. 331 (3), 306–307 (in Russian).Google Scholar
  66. 66.
    Gleiter, H. (1992) Nanostructured Materials 1, 1.CrossRefGoogle Scholar
  67. 67.
    Siegel, R.W. (1993) Nanostructured Materials 3, 1.CrossRefGoogle Scholar
  68. 68.
    Averback, R.S., Hofler, H.J., Hahn, H. Et al. (1992) Sintering and grain growth in nanocrystalline ceramics, Nanostructured Materials 1, 173–178.CrossRefGoogle Scholar
  69. 69.
    Andrievski, R.A. (1988) Role of the Chemical Bond Nature and Dispersity in Formation of Particulate Materials, Powder Metallurgy 8, 40–47 (in Russian).Google Scholar
  70. 70.
    Gleiter, H. (1995) Nanostructured Materials: State of the Art and Perspectives, Z.Metallkd. 86, 78–83.Google Scholar
  71. 71.
    Mazurenko, A.M., Urbanovich, V.S., Olekhnovich, A.I., Voitenko, A.A. (1987) Fine Crystalline Structure of Niobium and Tantalum Diborides Sintered under High Pressures, Superhard Materials 6, 34–36 (in Russian).Google Scholar
  72. 72.
    Tsiok, O.B., Sidorov, V.A., Bredikhin, V.V. et al. (1997) Dynamics of Powder Systems under High Pressures, in G.G.Taluts and N.I.Noskova (eds.), Structure, Phase Transformations and Properties of Nanocrystalline Alloys, UD RAS, Ekaterinburg, pp. 79–72 (in Russian).Google Scholar
  73. 73.
    Mazurenko, A.M., Urbanovich, V.S., Olekhnovich, A.I. et al. (1990) Investigation of Effect of Cold Pressing on the Aluminum Nitride Properties in A.M.Mazurenko and V.M.Dobryanski (eds.), High Pressures Techniques and Technologies, Uradjai, Minsk, pp. 139–143 (in Russian).Google Scholar
  74. 74.
    Sergeeva, A.V., Islangaliev, R., and Valiev, R.Z. (1997) Microstructure and Thermal Stability in Metal-Ceramic Titanium Based Nanocomposites, Programme and Abstracts of NATO ASI “Nanostructured Materials: Science and Technology”, August 10–20, 1997, St.-Petersburg, Poster P13–12.Google Scholar
  75. 75.
    Gorobtsov,V.G., Furs, V.Ya., Shevchenok, A.A., Bondarenko S.N. (1991) Application of Impulsive Loading for Fabricating Superconducting Ceramic Materials., BelNIINTI, Minsk (in Russian).Google Scholar
  76. 76.
    Kondo, K., Sawai, S., Akaishi, M., and Yamaoka, S. (1993) Deformation behaviour of shock-synthesized diamond powder under high pressures and high ternperatures, J. of Materials Science Letters 12, 1383–1385.Google Scholar
  77. 77.
    Andrievski, R.A., Konyaev, Yu.S., Leontiev, M.A., and Pivovarov, G.I. (1989) The Influence of High Pressures on Structure and Properties of Silicon Nitride in N.V.Novikov (ed.), High Pressure Science and Technology, 2, Naukova Dumka, Kiev, p. 170–173 (in Russian).Google Scholar
  78. 78.
    Andrievski, R.A., Ljutikov, R.A., Torbova, O.D. et al. (1993) Gassing and Porosity at Sintering of Ultrafine Titanium Nitride, Inorganic Materials 29, 1641–1644 (in Russian).Google Scholar
  79. 79.
    Andrievski, R.A., Voldman, G.M., Leontiev, M.A. (1991) About Boundary Parameters of Diffusion in Silicon Nitride, Inorganic Materials 27, 729–732 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • V. S. Urbanovich
    • 1
  1. 1.Institute of Solid State and Semiconductor PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations